Optimal Algorithm for Online Multiple Knapsack

Marcin Bieńkowski

Maciej Pacut (speaker) Krzysztof Piecuch

Multiple Knapsack

Textbook Knapsack (offline)

Given

- one knapsack of capacity 1
- multiset of items (size and weight)

Choose a subset of items

- $\bullet\,$ sum of sizes ≤ 1
- maximize total weight

Proportional Knapsack (offline)

Given

- one knapsack of capacity 1
- multiset of items (size and weight)

Choose a subset of items

- sum of sizes ≤ 1
- maximize total weight size

Multiple Knapsack (offline)

Choose a subset of items

- assign accepted items to a knapsacks
- in each knapsack: total size of items ≤ 1
- maximize total size

Online

Online Multiple Knapsack

Online Multiple Knapsack

(max objective: higher is better)

Our contributions

(max objective: higher is better)

Rising Threshold Algorithm

We say that items (1/2, 1] are large

(max 1 large per knapsack)

Rising Threshold Algorithm

Step 1. Algorithm for large items

Rising Threshold Algorithm (for large items)

Rising Threshold Algorithm (for large items)

assign each knapsack a threshold (tbd)

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

- fill from the left
- reject if under threshold

 \boldsymbol{n} knapsacks

Rising Threshold Algorithm Threshold function

Rising Threshold Algorithm Threshold function

Rising Threshold Algorithm

Analysis for large

 $= \frac{\int^{x} f(t)dt}{f(x) \cdot 1} \approx 0.59$

items exceeding threshold benefit both ALG and OPT

Rising Threshold Algorithm Next steps

• Step 1. Algorithm for large items (1/2,1]

Rising Threshold Algorithm Next steps

• Step 1. Algorithm for large items (1/2, 1]

Rising Threshold Algorithm Next steps

- Step 1. Algorithm for large items (1/2, 1] 🗸
- Step 2. Algorithm for large and medium items (1/3, 1/2]:

Adding medium items (1/3, 1/2]

Algorithm properties

- take large items according to threshold
- never reject medium items

Adding medium items (1/3, 1/2]

Algorithm properties

- take large items according to threshold
- never reject medium items

Observation. If finished with some empty knapsacks \Rightarrow optimal!

$$\frac{ALG_L + M}{OPT_L + M} \ge \frac{ALG_L}{OPT_L}$$

Adding medium items (1/3, 1/2]

- Case 1. Finished with some empty knapsacks \checkmark
- Case 2. Finished with no empty knapsacks:

Adding medium items (1/3, 1/2]

- Case 1. Finished with some empty knapsacks \checkmark
- Case 2. Finished with no empty knapsacks:

Adding medium items (1/3, 1/2]

- \bullet Case 1. Finished with some empty knapsacks \checkmark
- Case 2. Finished with no empty knapsacks:

Three options to arrange mediums

ALG:

Simplify: all mediums of size $m \in (1/3, 1/2]$

Answer: to have gain ≥ 0.59

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

- gain on waiting = m
- gain on stacked = 2m
- gain on large $\geq 1 m$

How many should wait? For different *m*, different answer!

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

Analysis

Analysis

Possible to extend for (lpha,1]

 $(\alpha \approx 0.2192)$

Rising Threshold Algorithm is optimal for Online Knapsack

Rising Threshold Algorithm is optimal for Online Knapsack

maciej.pacut@univie.ac.at