Optimal Algorithm for Online Multiple Knapsack

Marcin Bieńkowski

Maciej Pacut (speaker)
universität wien

Krzysztof Piecuch

Wrocławski

Knapsack

Knapsack

Knapsack

Knapsack

Knapsack

Knapsack

\square

Multiple Knapsack

Textbook Knapsack (offline)

Given

- one knapsack of capacity 1
- multiset of items (size and weight)

Choose a subset of items

- sum of sizes ≤ 1
- maximize total weight

Proportional Knapsack (offline)

Given

- one knapsack of capacity 1
- multiset of items (size and weight)

Choose a subset of items

- sum of sizes ≤ 1
- maximize total weight size

Multiple Knapsack (offline)

Choose a subset of items

- assign accepted items to a knapsacks
- in each knapsack: total size of items ≤ 1
- maximize total size

Online

Online Multiple Knapsack

Online Multiple Knapsack

maximize $\frac{A L G_{\text {online }}}{O P T_{\text {offline }}}$

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5 -competitive (Cygan et al. [TOCS 2016])

Known results

Bad news for One Online Knaspack

Known results

Bad news for One Online Knaspack

Known results

Bad news for One Online Knaspack

Known results

Bad news for One Online Knaspack

Known results

Our contributions

Rising Threshold Algorithm

We say that items $(1 / 2,1]$ are large

(max 1 large per knapsack)

Rising Threshold Algorithm

Step 1. Algorithm for large items

Rising Threshold Algorithm (for large items)

Rising Threshold Algorithm (for large items)

assign each knapsack a threshold (tbd)

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm (for large items)

- fill from the left
- reject if under threshold

Rising Threshold Algorithm Threshold function

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Threshold function

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Threshold function

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Threshold function

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Basic properties of f

$$
f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}
$$

Rising Threshold Algorithm Most important property of f

$$
\frac{\int^{x} f(t) d t}{f(x) \cdot 1}=\frac{\text { green area }}{\text { area below blue }}=\ln ^{-1}(2 e) \approx 0.59
$$

Rising Threshold Algorithm Most important property of f

$$
\frac{\int^{x} f(t) d t}{f(x) \cdot 1}=\frac{\text { green area }}{\text { area below blue }}=\ln ^{-1}(2 e) \approx 0.59
$$

Rising Threshold Algorithm Most important property of f

$$
\frac{\int^{x} f(t) d t}{f(x) \cdot 1}=\frac{\text { green area }}{\text { area below blue }}=\ln ^{-1}(2 e) \approx 0.59
$$

Rising Threshold Algorithm Most important property of f

$$
\frac{\int^{x} f(t) d t}{f(x) \cdot 1}=\frac{\text { green area }}{\text { area below blue }}=\ln ^{-1}(2 e) \approx 0.59
$$

Rising Threshold Algorithm

Analysis for large
$=$

$$
\frac{\int^{x} f(t) d t}{f(x) \cdot 1} \approx 0.59
$$

$$
+
$$

items exceeding threshold benefit both ALG and OPT

Rising Threshold Algorithm Next steps

- Step 1. Algorithm for large items ($1 / 2,1$]

Rising Threshold Algorithm Next steps

- Step 1. Algorithm for large items $(1 / 2,1] \sqrt{ }$

Rising Threshold Algorithm Next steps

- Step 1. Algorithm for large items $(1 / 2,1]$
- Step 2. Algorithm for large and medium items ($1 / 3,1 / 2$]:

Adding medium items ($1 / 3,1 / 2$]

Algorithm properties

- take large items according to threshold
- never reject medium items

Adding medium items ($1 / 3,1 / 2$]

Algorithm properties

- take large items according to threshold
- never reject medium items

Observation. If finished with some empty knapsacks \Rightarrow optimal!

$$
\frac{A L G_{L}+M}{O P T_{L}+M} \geq \frac{A L G_{L}}{O P T_{L}}
$$

Adding medium items ($1 / 3,1 / 2$]

- Case 1. Finished with some empty knapsacks $\sqrt{ }$
- Case 2. Finished with no empty knapsacks:

Adding medium items ($1 / 3,1 / 2$]

- Case 1. Finished with some empty knapsacks
- Case 2. Finished with no empty knapsacks:

Adding medium items ($1 / 3,1 / 2$]

- Case 1. Finished with some empty knapsacks
- Case 2. Finished with no empty knapsacks:

Three options to arrange mediums

wait
(for large)

stack
(with medium)

How we arrange mediums

ALG:

How we arrange mediums

How we arrange mediums

How we arrange mediums

(with large)

wait
(for large)

(with medium)

if too many
waits

How many medium items should wait?

How many medium items should wait?

How many medium items should wait?

How many medium items should wait?

How many medium items should wait?

How many medium items should wait?

Simplify: all mediums of size $m \in(1 / 3,1 / 2]$

How many medium items should wait?

Answer: to have gain ≥ 0.59

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

waiting

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

waiting

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

waiting

How many medium items should wait?

Each medium item is size m

- gain on waiting $=m$
- gain on stacked $=2 m$
- gain on large $\geq 1-m$

How many medium items should wait?

Answer: fix m, solve for gain(\#waiting) ≥ 0.59

How many medium items should wait?

Answer: fix m, solve for gain(\#waiting) ≥ 0.59

How many medium items should wait?

Answer: fix m, solve for gain(\#waiting) ≥ 0.59

How many medium items should wait?

Answer: fix m, solve for gain(\#waiting) ≥ 0.59

How many medium items should wait?

Answer: fix m, solve for gain(\#waiting) ≥ 0.59

How many medium items should wait?

Answer: fix m, solve for gain(\#waiting) ≥ 0.59

Beyond single medium item

Beyond single medium item

Beyond single medium item size

Beyond single medium item size

How many should wait? For different m, different answer!

Beyond single medium item size

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

Beyond single medium item size

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

Beyond single medium item size

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

Beyond single medium item size

- Sort waiting medium items
- Incoming medium item waits if fits below the curve

Analysis

Analysis

Possible to extend for $(\alpha, 1]$

$$
(\alpha \approx 0.2192)
$$

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Next steps: algorithm for small items $(0, \alpha]$
just the idea - simply stacking small items is not enough

Rising Threshold Algorithm is optimal for Online Knapsack
and the function
$f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}$
is natural for this problem

Rising Threshold Algorithm is optimal for Online Knapsack
and the function
$f(x)=\max \left\{1 / 2,(2 e)^{x-1}\right\}$
is natural for this problem

maciej.pacut@univie.ac.at

