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ABSTRACT

We initiate the study of a natural and practically rele-
vant new variant of online caching with bypassing where
the to-be-cached items can have dependencies. We as-
sume that the universe is a tree T and items are tree
nodes; we require that if a node v is cached then the
whole subtree T'(v) rooted at v is cached as well. This
theoretical problem finds an immediate application in
the context of forwarding table optimization in IP rout-
ing and software-defined networks.

We present an elegant online deterministic algorithm
TC for this problem, and rigorously prove that its com-
petitive ratio is O(HEIGHT(T)-konL/(konL —kopT+1)),
where kont, and kopr denote the cache sizes of an on-
line and the optimal offline algorithm, respectively. The
result is optimal up to a factor of O(HEIGHT(T)).
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1. INTRODUCTION

In the classic online paging problem, items of some
universe are requested by a processing entity (e.g., blocks
of RAM are requested by the processor). To speed up
the access, computers use a faster memory, called cache,
capable of accommodating k such items. Upon a re-
quest to a non-cached item, the algorithm has to fetch
it into the cache, paying a fixed cost, while a request to
a cached item is free. If the cache is full, the algorithm
has to free some space by evicting an arbitrary subset
of items from the cache.

The paging problem is inherently online: the algo-
rithm has to make decisions what to evict from the
cache without the knowledge of future requests; its cost
is compared to the cost of the optimal offline solution
and the ratio of these two amounts is called competitive
ratio. The first analysis of this basic problem in an on-
line model was given over three decades ago by Sleator
and Tarjan [28]. The problem was later considered in
a variety of flavors. In particular, some papers consid-
ered a bypassing model [11, 15], where item fetching is
optional: the requested item can be served without be-
ing in the cache, for another fixed cost (usually being
at most the cost of item fetching).

In this paper, we introduce a natural extension of
this fundamental problem, where items have inter-de-
pendencies. More precisely, we assume that the universe
is an arbitrary (not necessarily binary) rooted tree T
and the requested items are its nodes. For any tree node
v, T(v) C T is a subtree rooted at v containing v and
all its descendants. We require the following property:
if a node v is in the cache, then all nodes of T'(v) are
also cached. In other words, we require that the cache
is a subforest of T, i.e., a union of disjoint subtrees
of T. We call this problem online tree caching.

Furthermore, we assume a bypassing model and dis-
tinguish between two types of requests: a request can
be either positive or negative. The positive requests
correspond to “normal” requests known from caching
problems: we pay 1 if the node is not cached; for a neg-
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ative request, we pay 1 if the corresponding request is
cached. After serving the request, we may reorganize
our cache arbitrarily, but the resulting cache has to still
be a subforest of 7. We pay « for fetching or evicting
any single node, where a@ > 1 is an integer and a param-
eter of the problem. Our goal is to minimize the overall
cost of maintaining the cache and serving the requests.

One interesting application for our model arises in
the context of modern IP routers which need to store
a rapidly increasing number of forwarding rules [1, 9].
In Section 2, we give a glimpse of this application, dis-
cussing how tree caching algorithms can be applied in
existing systems to effectively reduce the memory re-
quirements on IP routers.

1.1 Our Contributions

We initiate the study of a natural new caching with
bypassing problem which allows to account for tree-
dependencies among items. The problem finds immedi-
ate applications, e.g., in IP routing and software-defined
networking.

In particular, we consider the online tree caching prob-
lem within the resource augmentation paradigm: we
assume that cache sizes of the online algorithm (konr)
and the optimal offline algorithm (kopr) may differ.
We assume koni, > kopr and let R = k’ONL/(kONL -
kopr +1).

We present an elegant deterministic online algorithm
TC for this problem. While our algorithm is simple,
the analysis requires several non-trivial insights into the
problem. In particular, we rigorously prove that TC is
O(R(T) - R)-competitive, where h(T') is the height of
tree T. That is, we show that there exists a constant (3,
such that TC(I) < O(h(T) - R) - OpT(I) + S for any
input I. Note that this result is optimal up to the fac-
tor O(R(T)): in Appendix C, we show that the lower
bound R for the paging problem [28] implies an Q(R)
lower bound for our problem for any o > 1.

1.2 Related Work on Caching

Our formal model is a novel variant of competitive
paging, a classic online problem. In the framework of
the competitive analysis, the paging problem was first
analyzed by Sleator and Tarjan [28], who showed that
algorithms LEAST-RECENTLY-USED, FIRST-IN-FIRST-
Ourt and FLUSH-WHEN-FULL are konr/(konL—kopT+
1)-competitive and no deterministic algorithm can beat
this ratio. In the non-augmented case when konr =
kopT = k, the competitive ratio is simply k.

The simple paging problem was later generalized to
allow different fetching costs (weighted paging) [8, 32]
and additionally different item sizes (file caching) [33],
with the same competitive ratio. Asymptotically same
results can be achieved when bypassing is allowed (see
[11, 15] and references therein). With randomization,
the competitive ratio can be reduced to O(logk) even
for file caching [3]. The lower bound for randomized
algorithms is H, = ©(logk) [12] and is matched by

known paging algorithms [2, 24].

To the best of our knowledge, the variant of caching,
where fetching items to the cache is not allowed unless
some other items are cached (as it is the case for the
restrictions induced by the underlying tree in this pa-
per) was not considered previously in the framework of
competitive analysis. Note that there is a seemingly
related problem called restricted caching [6] (there are
also its variants called matroid caching [7] or companion
caching [25]). Despite naming similarities, the restricted
caching model is completely different from ours: there
the restriction is that each item can be placed only in
a restricted set of cache locations. Hence, even the algo-
rithmic ideas developed in [6, 7, 25] are not applicable
in our scenario.

1.3 Paper Organization

The remainder of this paper is organized as follows.
Section 2 sketches a practical motivation and Section 3
introduces the preliminaries. We present our algorithm
in Section 4 and we rigorously analyze its competitve
ratio in Section 5. We reason about implementation
aspects in Section 6 and conclude in Section 7. Due
to space constraints and for ease of presentation, addi-
tional technical details are postponed to the Appendix.
The Appendix also includes a lower bound as well as
a polynomial-time algorithm that solves the static prob-
lem variant.

2. APPLICATION: MINIMIZING FOR-
WARDING TABLES IN ROUTERS

Dependencies among to-be-cached items arise in nu-
merous settings and are a natural refinement of many
caching problems. To give a concrete example, one im-
portant motivation for our tree-based dependency model
arises in the context of IP routers. In particular, the
online tree caching problem we introduce in this paper
is motivated by router memory constraints in IP-based
networks. The material presented in this section serves
for motivation, and is not necessary for understanding
the remainder of the paper.

Nowadays, routers have to store an enormous num-
ber of forwarding rules: the number of rules has dou-
bled in the last six years [1] and the superlinear growth
is likely to be sustained [9]. This entails large costs for
Internet Service Providers: fast router memory (usually
Ternary Content Addressable Memory (TCAM)) is ex-
pensive and power-hungry [29]. Many routers currently
either operate at (or beyond) the edge of their memory
capacities. A solution, which could delay the need for
expensive or impossible memory upgrades in routers,
is to store only a subset of rules in the actual router
and store all rules on a secondary device (for example
a commodity server with a large but slow memory) [17,
18, 19, 20, 27].

This solution is particularly attractive with the ad-
vent of Software-Defined Network (SDN) technology,
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Figure 1: The router (right) caches only a subset
of all rules, and rules that are not cached are
answered by the controller (left) that keeps the
whole tree of rules. Updates to the rules are
passed by the controller to the router.

which allows to manage the expensive memory using a
software controller [17, 27]. In particular, our theoreti-
cal model can describe real-world architectures like [17,
27], that is, our model formalizes the underlying oper-
ational problems of such architectures. Our algorithm,
when applied in the context of such architectures, can
hence be used to prolong the lifetime of IP routers.

Setup, positive requests, fetches and evictions.
The setup (see [27] for a more technical discussion) de-
picted in Figure 1 consists of two entities: the actual
router (e.g., an OpenFlow switch) which caches only
a subset of all forwarding rules, and the (SDN) con-
troller, which keeps all rules in its less expensive and
slower memory. During runtime, packets arrive at the
router, and if an appropriate forwarding rule is found
within the rules cached by the router, then the packet is
forwarded accordingly, and the associated cost is zero.
Otherwise, the packet has to be forwarded to the con-
troller (where an appropriate forwarding rule exists);
this indirection costs 1. Hence, the rules correspond
to cacheable items and accesses to rules are modelled
by positive requests to the corresponding items. At
some chosen points in time, the caching algorithm run
at the controller may decide to remove or add rules to
the cache. Any such change entails a fixed cost a.!

Tree dependencies. Note that the technical feasibil-
ity of this solution heavily depends on the rule depen-
dencies. In the most ubiquitous scenario, the rules are
prefixes of IP addresses (they are bit strings). Whenever
a packet arrives, the router follows a longest matching
prefix (LMP) scheme: it searches for the rule that is
a prefix of the destination IP of the packet and among
matching rules it chooses the longest one. In other
words, if the prefixes corresponding to rules are stored
in the tree?, then the tree is traversed from the root

I This cost corresponds to the transmission of a message
from the controller to the router as well as the update of
internal data structures of the router. Such an update
of proprietary and vendor-dependent structures can be
quite costly [14], but the empirical studies show it to be
independent of the rule being updated [13].

2We do not have to assume that they are actually stored
in a real tree; this tree is implicit in the LMP scheme.

downwards, and the last found rule is used. This ex-
plains why we require the cached nodes to form a sub-
forest: leaving a less specific rule on the router while
evicting a more specific one (i.e., keeping a tree node in
cache while evicting its descendant) will result in a situ-
ation where packets will be forwarded according to the
less specific rule, and hence potentially exit through the
wrong port. The LMP scheme also ensures that the
described approach is implementable: one could sim-
ply add an artificial rule at the tree root in the router
(matching an empty prefix). This ensures that when
no actual matching rule is found in the router (in the
cache), the packet will be forwarded according to this
artificial rule to the controller that stores all the rules
and can handle all packets appropriately.

So far, the papers on IP rule caching avoided depen-
dencies either assuming that rules do not overlap (a tree
has a single level) or by changing the tree on the fly, so
that the rules become non-overlapping [18, 19, 20]. Un-
fortunately, this could lead to a large inflation of the
routing table. A notable exception is a recent solu-
tion called CacheFlow [17]. The CacheFlow model sup-
ports dependencies even in the form of directed acyclic
graphs. However, CacheFlow was evaluated only exper-
imentally, and no worst-case guarantees were given on
the overall cost of caching. Our work provides theoret-
ical foundations for respecting tree dependencies.

Negative requests. Additionally, a rule may need
to be updated. For example, due to a change commu-
nicated by a dynamic routing protocol (e.g., BGP) the
action defined by a rule has to be modified. In either
case, we have to update the rules at the controller: we
assume that this cost is zero. (This cost is unavoidable
for any algorithm, so such an assumption makes our
problem only more difficult.) Furthermore, if the rule
is also stored at the router, then we have to pay a fixed
cost of « for updating the router (see the remark for
the cost of fetches and evictions). Such penalties can be
easily simulated in our model: we issue a sequence of «
negative requests to the updated node. It is straight-
forward to show that the costs in these two models can
differ by a factor of at most 2. For a formal argument,
see Appendix B.

Implementability. Note that the whole input (fed
to a tree caching algorithm) is created at the controller:
positive requests are caused by cache misses (which redi-
rect packet to the controller) and batches of « negative
requests are caused by updates sent to the dynamic
routing algorithm run at the controller. Therefore, the
whole tree caching algorithm can be implemented in
software in the controller only. Furthermore, our algo-
rithm is a simple counter-based scheme, which can be
implemented efficiently and also fine-tuned for speed,
see Section 6.

Other work on forwarding table minimization.
Other approaches for minimizing the number of stored



rules were mostly based on rules compression (aggrega-
tion), where the set of rules was replaced by another
equivalent and smaller set. Optimal aggregation of a
fixed routing table can be achieved by dynamic pro-
gramming [10, 30], but the main challenge lies in balanc-
ing the achieved compression and the amount of changes
to the routing table in the presence of updates to this ta-
ble. While many practical heuristics have been devised
by the networking community for this problem [16, 21,
22, 23, 26, 31, 34], worst-case analyses were presented
only for some restricted scenarios [4, 5]. Combining
rules compression and rules caching is so far an unex-
plored area.

3. PRELIMINARIES

We denote the height of 7' by h(T). For any node
v, T'(v) denotes the subtree of T rooted at v (contain-
ing v and all its descendants). A tree cap rooted at v
is “an upper part” of T'(v), i.e., it contains v and if it
contains node u, then it also contains all nodes on the
path from u to v. If A C B are both tree caps rooted
at v, then we say that A is a tree cap of B.

We assume discrete time slotted into rounds, with
round ¢ > 1 corresponding to time interval (¢t —1,¢). In
round ¢, the algorithm is given one (positive or negative)
request to exactly one tree node and has to process it,
i.e., pay associated costs (if any). Right after round ¢,
at time t, the algorithm may arbitrarily reorganize its
cache, (i) ensuring that the resulting cache is a subforest
of T (i.e., if the cache contains node v, then it contains
the entire T'(v)) and (ii) preserving the cache capacity
constraint. An algorithm pays a for a single node fetch
or eviction. We denote the contents of the cache at
round ¢t by C;. (As the cache changes contents only
between rounds, C; is well defined.) We assume that
« is an even integer (this assumption may change costs
at most by a constant factor). We assume that the
algorithm starts with an empty cache.

We call a non-empty set X a wvalid positive change-
set for cache C' if X NC = ) and C U X is a subforest
of T, and a walid negative changeset if X C C and
C'\ X is a subforest of T. We call X a valid changeset
if it is either valid positive or negative changeset. Note
that the union of positive (negative) changesets is also
a valid positive (negative) changeset. We say that the
algorithm applies changeset X, if it fetches all nodes
from X (for a positive changeset) and evicts all nodes
from X (for a negative one). Note that not all valid
changesets may be applied as the algorithm is also lim-
ited by its cache capacity (konr, for an online algorithm
and kopr for the optimal offline one).

4. ALGORITHM

The algorithm TREE CACHING (TC) presented in
the following is simple. It operates in multiple phases.
The first phase starts at time 0. TC starts each phase
with an empty cache and proceeds as follows. Within

a phase, every node keeps a counter, which is initially
zero. If at round ¢ it pays 1 for serving the request,
it increments its counter. Whenever a node is fetched
or evicted from the cache, its counter is reset to zero.
Note that this implies that the counter of v is equal to
the number of negative (positive) requests to v since its
last fetching to the cache (eviction from the cache). For
aset A C T, we denote the sum of all counters in A at
time ¢t by cnty(A). At time ¢, TC verifies whether there
exists a valid changeset X, such that

o (saturation property) cnty(X) > |X| - o and

o (mazimality property) cuty(Y) < |Y] - « for any
valid changeset ¥ 2 X.

In this case, the algorithm modifies its cache apply-
ing X.

If, at time ¢, T'C is supposed to fetch some set X, but
by doing so it would exceed the cache capacity konr,
it evicts all nodes from the cache instead, and starts
a new phase at time ¢. Such a final eviction might not
be present in the last phase, in which case we call it
unfinished.

In Lemma 1 (below), we show that at any time, all
valid changesets satisfying both properties of TC are ei-
ther all positive or all negative. Furthermore, right after
the algorithm applies a changeset, no valid changeset
satisfies saturation property.

Section 6 shows that TC can be implemented effi-
ciently.

S. ANALYSIS OF TC

Throughout the paper, we fix an input I, its partition
into phases, and analyze both TC and OPT on a sin-
gle fixed phase P. We denote the times at which P
starts and ends by begin(P) and end(P), respectively,
i.e., rounds in P are numbered from begin(P) + 1 to
end(P). A proof of the following technical lemma fol-
lows by induction and is presented in Appendix A.

LEMMA 1. Fiz any time t > begin(P). For any valid
changeset X for C, it holds that enty(X) < |X|- . If
a changeset X is applied at time t, the following prop-
erties hold:

1. X contains the node requested at round t,

2. enty(X) = |X| - «,

3. enty(Y) < |Y]-« for any valid changesetY for Cyyq
(note that Cy11 is the cache state right after appli-
cation of X ),

4. X is a tree cap of a tree from Ciiq if X is posi-
tive and it is a tree cap of a tree from Cy if X is
negative.

In the following, we assume that no positive requests
are given to nodes inside cache and no negative ones to
nodes outside of it. (This does not change the behavior
of TC and can only decrease the cost of OPT.)



For the sake of analysis, we assume that at time
end(P), TC actually performs a cache fetch (exceeding
the cache size limit) and then, at the same time instant,
empties the cache. This replacement only increases the
cost of TC. Let kp denote the number of nodes in the
cache of TC at end(P). In a finished phase, we measure
it after the artificial fetch, but right before the final evic-
tion, and thus kp > konyp, + 1; in an unfinished phase
kp < konL-

The crucial part of our analysis that culminates in
Section 5.2 is the technique of shifting requests. Namely,
we modify the input sequence by shifting requests up or
down the tree, so that the resulting input sequence (i) is
not harder for OPT and (ii) is more structured: we may
lower bound the cost of OPT on each node separately
and relate it to the cost of TC.

5.1 Event Space and Fields

In our analysis, we look at a two-dimensional discrete,
spatial-temporal space, called the event space. The first
dimension is indexed by tree nodes, whose order is an ar-
bitrary extension of the partial order given by the tree.
That is, the parent of a node v is always “above” v.
The second dimension is indexed by round numbers of
phase P. The space elements are called slots. Some slots
are occupied by requests: a request at node v given at
round ¢ occupies slot (v,t). From now on, we will iden-
tify P with a set of requests occupying some slots in the
event space.

We partition slots of the whole event space into dis-
joint parts, called fields, and we show how this partition
is related to the costs of TC and OpT. For any node v
and time ¢, last,(t) denotes the last time strictly be-
fore t, when node v changed state from cached to non-
cached or vice versa; last,(t) = begin(P) if v did not
change its state before ¢ in phase P. For a changeset X;
applied by TC at time ¢, we define the field F* as

Ft={(v,r):veX, ANast,(t) +1<r<t} .

That is, field F'* contains all the requests that eventually
trigger the application of X; at time ¢. We say that
F' ends at t. We call field F! positive (negative) if
X, is a positive (negative) changeset. An example of
a partitioning into fields is given in Figure 2. We define
req(F?) as the number of requests belonging to slots
of F' and let size(F") be the number of involved nodes
(note that size(F') = |X;|). The observation below
follows immediately by Lemma 1.

OBSERVATION 2. For any field F', req(F) = size(F) -
a. All these requests are positive (negative) if F' is pos-
itive (negative).

Finally, we call the rest of the event space defined by
phase P open field and denote it by F°°. The set of
all fields except F*° is denoted by F. Let size(F) =

> persize(F).

k ONL

Figure 2: Partitioning of a single phase into
fields for a line (a tree with no branches). The
thick line represents cache contents. Possible fi-
nal eviction at end(P) is not depicted. F' is
a negative field and F*? is a positive one. In
the particular depicted example, nodes are or-
dered from the leaf (bottom) to the root (top of
the picture). We emphasize that for a general,
branched tree, some notions (in particular fields)
no longer have nice geometric interpretations.

LEMMA 3. For any phase P partitioned into a set of
fields F U {F°°}, it holds that TC(P) < 2« - size(F) +
req(F>®) + kp - a.

PRrOOF. By Observation 2, the cost associated with
serving the requests from all fields from F is ), - -
size(F') = « - size(F). The cost of the cache reorganiza-
tion at the fields’ ends is exactly the same. The term
req(F*°) represents the cost of serving the requests from
F* and kp - a upper-bounds the cost of the final evic-
tion (not present in an unfinished phase). O

5.2 Shifting Requests

The actual challenge in the proof is to relate the struc-
ture of the fields to the cost of OPT. The rationale be-
hind our construction is based on the following thought
experiment. Assume that the phase is unfinished (for
example, when the cache is so large that the whole input
corresponds to a single phase). Recall that the number
of requests in each field F' € F is equal to size(F)-o. As-
sume that these requests are evenly distributed among
the nodes of F' (each node from F' receives « requests
in the slots of F'). Then, the history of any node v is
alternating between periods spent in positive fields and
periods spent in negative fields. By our even distribu-
tion assumption, each such a period contains exactly
« requests. Hence, for any two consecutive periods of



a single node, OPT has to pay at least « (either « for
positive requests or « for negative ones, or « for chang-
ing the cached/non-cached state of v). Essentially, this
shows that OPT has to pay an amount that can be easily
related to « - size(F).

Unfortunately, the requests may not be evenly dis-
tributed among the nodes. To alleviate this problem,
we will modify the requests in phase P, so that the
newly created phase P’ is not harder for OPT and will
“almost” have the even distribution property. In this
construction, the time frame of P and its fields are fixed.

5.2.1 Legal Shifts

We say that a request placed originally (in phase P)
at slot (v,t) is legally shifted if its new slot is (m(v),t),
where (i) for a positive request, m(v) is either equal to v
or is one of its descendants and (ii) for a negative re-
quest, m(v) is either equal to v or is one of its ancestors.
For any fixed sequence of fetches and evictions within
phase P, the associated cost may only decrease when
these actions are replayed on the modified requests.

OBSERVATION 4. If P’ is created from P by legally
shifting the requests, then OPT(P’) < OpT(P).

The main difficulty is however in keeping the legally
shifted requests within the field they originally belonged
to. For example, a negative request from F' shifted at
round ¢ from node u to its parent may fall out of F' as
the parent may still be outside the cache at round ¢. In
effect, a careless shifting of requests may lead to a situ-
ation where, for a single node v, requests do not create
interleaved periods of positive and negative requests,
and hence we cannot argue that OPT(P’) is sufficiently
large.

In the following subsections, we show that it is pos-
sible to legally shift the requests of any field F' € F, so
that they remain within F', and they will be either ex-
actly or approximately evenly distributed among nodes
of F'. This will create P’ with appropriately large cost
for OPT.

5.2.2 Notation

We start with some general definitions and remarks.
For any field F' and set of nodes A, let FNA = {(v,1) €
F : v e A}. Analogously, if L is a set of rounds, then
let FNL = {(v,t) € F :t € L}. For any field F* and
time 7, we define

FL =F'n{t':t' <7} .

It is convenient to think that F* evolves with time and
FL_ is the snapshot of F"' at time 7. Note that F* may
have some nodes not included in FL_. These notions
are depicted in Figure 2. -

We may extend the notions of req and size to arbi-
trary subsets of fields in a natural way. For any subset
S C F, we call it over-requested if req(S) > size(S) - a.

LEMMA 5. Fiz any field F*, the corresponding change-
set X¢, and any time T.
1. If F? is negative, then for any tree cap D of Xy,
the set FL_N D is not over-requested.
2. If Ft is positive, then for any subtree T' C T, the
set FL_NT' is not over-requested.

PROOF. As the nodes from FL_N D form a valid
changeset at time 7, Lemma 1 implies req(Ft_N D) =
ent, (FE_ND) < |FL_ND|-a. -

The proof of the second property is identical: As
FY _NT"is also a valid changeset at time 7, by Lemma 1,
req(FL NT') =cnt, (FL_NT)<|FL_NT'|-a. O

By Lemma 5 applied at 7 = ¢ and Observation 2, we
deduct the following corollary.

COROLLARY 6. Fiz any field F, the corresponding
changeset Xy and any tree cap D of X;.
1. If F* is positive, then req(F* N D) > - |D|.
2. If F* is negative, then req(F* N (X; \ D)) > « -
X\ D).

Informally speaking, the corollary above states that
the average amount of requests in a positive field is at
least as large at the top of the field as at its bottom. For
a negative field this relation is reversed.

5.2.3 Shifting Negative Requests Up

Fix any valid negative changeset X, applied at time ¢
and the corresponding field F*. We call a tree cap
Y C X, proper if

1. req(F*NY) = Y] -« and

2. FQT N D is not over-requested for any tree cap

D CY and any time 7 < t.

The first property of Lemma 5 states that before we
shift the requests of Fy, the set X; is proper. We start
with Y = X;, and proceed in a bottom-up fashion, in-
ductively using the lemma below. We take care of a sin-
gle node of Y at a time and ensure that after the shift
the number of requests at this node is exactly « and the
remaining part of Y remains proper.

LEMMA 7. Given a negative field F*, the correspond-
ing changeset Xy and a proper tree cap ¥ C Xy, it is
possible to choose a leaf v and legally shift some requests
inside Y, so that in result req(v) = a and Y \ {v} is
proper.

PROOF. Asrteq(F'NY) = |Y|-a, Corollary 6 implies
that any leaf of Y was requested at least « times in-
side F'*. We pick an arbitrary leaf v, and let » > a be
the number of requests to v in F*.

We look at all the requests to v in F'* ordered by their
round. Let s be the round when (a + 1)-th of them ar-
rives. We will now show that at round s, TC already
has p(v) in its cache. If it had not, {v} would be a tree
cap of F!_, and by the first property of Lemma 5, it
would contain at most a requests, which is a contradic-
tion. Hence, if we shift the chronologically last r — «
requests from v to p(v), these requests stay within F*.



It remains to show that Y \ {v} is proper after such
a shift. We choose any tree cap D C Y and any time
7 <t. If D does not contain p(v) or 7 < s, then the
number of requests in FX_N D was not changed by the
shift, and hence FL_N D is not over-requested. Other-
wise, D U {v} was a tree cap in Y and by the lemma
assumption, FL_N (D U {v}) was not over-requested.
As FL_N D has now exactly a less requests than F%_N
(DU {v}) had, it is not over-requested, either. [

COROLLARY 8. For any negative field F*, it is pos-
sible to legally shift its requests up, so that they remain
within F* and after the modification each node is re-
quested exactly o times.

5.2.4  Shifting Positive Requests Down

We will now focus on the problem of shifting the pos-
itive requests down in a single positive field F?, cor-
responding to a single fetch of TC at the time t. Our
goal is to devise a shifting strategy, that will result in at
least Q(size(F?)/h(T)) nodes having «/2 requests each.
While this result may be suboptimal, deriving a shift-
ing strategy for a positive field that would have the
same equal distribution guarantee as the one provided
by Corollary 8 is not possible (see Appendix C).

First, we prove that from any node v in the field, we
can shift down a constant fraction of its requests within
the field, distributing them to different nodes.

LEMMA 9. Let F't be a positive field and let X; be the
corresponding changeset fetched to the cache at time t.
Fiz any node v € X, that has been requested at least
c-(a/2) times in Ft, where c is an integer. It is possible
to shift down its requests to the nodes of T'(v) N Xy, so
that these requests remain inside F' and [c/2] nodes of
T(v) get a/2 requests each.

Proor. We order the nodes ui,uz, ... uw)nx, of
T(v)NXy, so that last,,, () < last,,, (t) for all 7. In case
of a tie, we place nodes that are closer to v first. Note
that this linear ordering is an extension of the partial
order defined by the tree: the parent of a node cannot be
evicted later than the node itself (otherwise the cache
would cease to be a subforest of T'). In particular, it
holds that u; = v.

We number ¢ - (a/2) requests to v chronologically,
starting from 1. For any j € {1,...,[c¢/2]} we look
at round 7; with the ((j — 1) - & + 1)-th request to v.
When this request arrives, node u; is already present in
the cache. Otherwise, we would have at least j-a+1
requests in 2 N {u1,...,u;} (already in F£_ N {us}
alone), which would make it over-requested, and thus
contradict the second property of Lemma 5. Hence,
we may take requests numbered from (j — 1) - a + 1
to (j — 1) - @ + «/2, shift them down from v to u;,
and after such a modification these requests are still
inside F'*. Note that for j = 1 requests are not really
shifted, as u; is v itself. We perform such a shift for
any j € {1,...,[c¢/2]}, which yields the lemma. O

begin(P) end(P)

Figure 3: Partitioning of the phase into inter-
leaving IN and OUT periods for node v. The thick
line represents cache contents. The leftover ouT
period is present for node v as it has finished
phase P inside TC’s cache. The periods can be
followed by requests contained in F°.

LEMMA 10. For any positive field Ft, it is possible to
legally shift its requests down, so that they remain within
F*' and after the modification at least size(F*)/(2h(T))
nodes in F* have at least o /2 requests each.

Proor. Let X; be the changeset corresponding to
field I, fetched to the cache at time ¢. By Observa-
tion 2, req(F') = |X;| - a. We gather the requests at
every node into groups of /2 consecutive requests. In
every node at most «/2 requests remain not grouped.
Let teq(X) denote the number of grouped requests in
the set X. Clearly, Teq(F*) > |Xy| - /2, i.e., there are
at least | X¢| groups of requests in set X;.

Let X; = X} UX2U - U X" be a partition of
the nodes of the tree X; into layers according to their
distance to the root. By the pigeonhole principle, there
is a layer X} containing at least [|X;|/h(T)] groups of
requests (each group has a/2 requests).

Nodes of X are independent, i.e., for u,v € X} the
trees T'(u) and T'(v) are disjoint. Therefore, we may
use the shifting strategy described in Lemma 9 for each
node of X7 separately. After such modification, at least
[|X:|/(2h(T))] > size(Fy)/(2h(T)) nodes have at least
a/2 requests each. O

5.2.5 Using Request Shifting for Bounding OPT

Finally, we may use our request shifting to relate
size(F) = > pcrsize(F) to the cost of OPT in a sin-
gle phase P. Recall that kp denotes the size of TC’s
cache at the end of P. We assume that OPT may start
the phase with an arbitrary state of the cache.

LEMMA 11. For any phase P, it holds that OpT(P) >
(size(F)/(4M(T)) — kp) - /2.

PRrROOF. We transform P using legal shifts described
in Section 5.2.3 and Section 5.2.4. That is, we create
a corresponding phase P’ that satisfies both Corollary 8
and Lemma 10. By Observation 4, it is sufficient to
show that OpT(P’) > (size(F)/(4h(T)) — kp) - a/2.

We focus on a single node v. We cut its history
into interleaved periods: OUT periods, when v is outside
the cache and receives positive requests, and IN periods
when TC keeps v in the cache and v receives negative
requests. A final (possibly empty) part corresponding



to the time when v is in the F'*° field is not accounted
in OUT or IN periods, i.e., each IN or OUT period corre-
sponds to some field F' € F. Let p™ and p°Y" denote
the total number of IN and OUT periods (respectively)
for all nodes during the phase. An example is given
in Figure 3.

Recall that TC starts each phase with an empty cache,
and hence each node starts with an ouT period. For kp
nodes that are in TC’s cache at the end of the phase
(and only for them) their history ends with an OUT pe-
riod not followed by an IN period. We call them leftover
periods. Thus, p°’T = p™ + kp. The total number of
periods (p™ +p°U") is equal to the total size of all fields,
size(F), and thus p°'" = (size(F) + kp)/2 > size(F)/2.

We call a period full if it has at least a/2 requests.
The shifting strategies described in the previous section
ensure that all IN periods are full and at least 1/(2h(T))
of all oUuT periods are full. Thus, there are at least
p°U" /(2h(T')) — kp full OUT non-leftover periods; each of
them together with the following IN period constitutes
a full OUT-IN pair.

OPT has to pay at least a/2 for the node in the course
of the history described by a full OUT-IN pair: it pays
a either for changing the cached/non-cached state of
a node, or a/2 for all positive requests or «/2 for all
negative ones. Thus, OpT(P’) > (p°""/(2h(T)) — kp) -
a/2 > (size(F)/(4h(T)) — kp) - /2. O

5.3 Competitive Ratio

To relate the cost of OpPT to TC in a single phase P,
we still need to upper-bound req(F*°) and relate kp - «
to the cost of OPT (cf. bounds on TC and OPT provided
by Lemma 3 and Lemma 11, respectively).

For the next two lemmas, we define Vopr as the set
of all nodes that were in OPT cache at some time of P
and let V§pr = T\ Vopr. Note that Vopr is a union of
subforests (nodes present in OPT’s cache at consecutive
times), and hence a subforest itself.

LEMMA 12. For any phase P, it holds that req(F>°) <
2-/€ONL-OZ+2-OPT(P),

PROOF. We assume first that P is a finished phase.
Then, P ends with an artificial fetch of X¢,q(p) at time

end(P) (followed by the final eviction). We split F'*°
into two disjoint parts (see Figure 2):

F> = {(v,t) : v € Cena(p),t > last,(end(P))} ,
Fio = {(Uat) *v ¢ C(end(P) u Xend(P)7
t > last, (end(P))} .
Note that F*° contains only negative requests and F'$°
only positive ones. As req(F'>) = req(F>°) 4 req(F{° N

VSpr) + req(F$° N Vopr), we estimate each of these
summands separately.

e Nodes from F°° are in the cache Cepq(py and were
not evicted from the cache. Thus, req(F>°) <
|Cena(p)| - @ < konr - .

o All the requests from V§pr are paid by OPT, and
hence req(F° N VSpp) < req(VSpr) < OPT(P).

e F?°isavalid changeset for cache Conq(p)UXend(p)-
As Vopr is a subforest of T', F'2° N Vopr is also a
valid changeset for the cache Ceng(py U Xena(p)-
Therefore, req(F° NVopr) < size(F°NVopr) - o,
as otherwise the set fetched at time end(P) would
not be maximal. (TC could then fetch Xcnq(p) U
(F°NVopr) instead of Xenq(p).) Thus, req(F5°N
Vorr) < |Vopt|-a = kopr - a+ ([Vopt| — kopr) -
a < kon-a+OPT(P). The last inequality follows
as — independently of the initial state — OPT
needs to fetch at least |Vopr| — kopT nodes to the
cache during P.

Hence, in total, req(F>°) < 2-konr - @+ 2- OpPT(P) for
a finished phase P.

We note that if there was no cache change at end(P),
the analysis above would hold with X,qpy = 0 with
virtually no change. Therefore, for an unfinished phase
P ending with a fetch or ending without cache change
at end(P), the bound on req(F*°) still holds. How-
ever, if an unfinished phase P ends with an eviction,
then we look at the last eviction-free time 7 of P. We
now observe the evolution of field F*° from time 7 till
end(P). At time 7, req(F*°) < 2-konL -a+2-OPT(P).
Furthermore, in subsequent times it may only decrease:
at any round F'°° gets an additional request, but on
eviction req(F>) decreases by « times the number of
evicted nodes (i.e., at least by a > 1). Hence, the value
of req(F°) at end(P) is also at most 2 - konp, - + 2 -
Oorpt(P). O

By combining Lemma 3, Lemma 11 and Lemma 12,
we immediately obtain the following corollary (holding
for both finished and unfinished phases).

COROLLARY 13. For any phase P, it holds that
TC(P) < O(MT))-OrPT(P)+O(h(T)- (kp+konL) ).

Using the corollary above, its remains to bound the
value of kp. This is easy for an unfinished phase, as
kp < kont there. For a finished phase, we provide
another bound.

LEMMA 14. For any finished phase P, it holds that
kp-a < OPT(P) - (konL + 1)/(kont + 1 — kopr)-

PRrROOF. First, we compute the number of positive
requests in V§pp. Let Xy, Xy,,...,X:, be all posi-
tive changesets applied by TC in P. For any t, let
X[ = X\ Vopr. As X; is some tree cap and Vopr is
a subforest of T', X7 is a tree cap of X;. By Corollary 6,
the number of requests to nodes of X/ in field F* is at
least | X]|-«. These requests for different changesets X;
are disjoint and they are all outside of Vopr. Hence the
total number of positive requests outside of Vopr is at
least Y7, | X{,| - o, where >y | X, | > [U_, Xi|=
(Ui Xe) \ Vopr| > [UiZy Xe.| — [Vopr| > kp —
[Vopr|.



Now OPT(P) can be split into the cost associated
with nodes from Vopr and V{§pr, respectively. For the
former part, OPT has to pay at least (|[Vopr| — kopr) -
« for the fetches alone. For the latter part, it has to
pay 1 for each of at least (kp — |Vopr|) - @ positive
requests outside of Vopr. Hence, OPT(P) > (|VopT| —
kopr)-a+ (kp — |Voprl|) - a = (kp — kopt) - @. Then,
kp-a < kp-OpT(P)/(kp — kopr). As the phase is
finished, kp > konr + 1, and thus kp - a < (konL + 1) -
OPT(P)/(k‘ONL +1-— k‘opT). |

THEOREM 15. TC is O(h(T)-konw/(konL — kopT +
1))-competitive.

ProoF. Let R = h(T) - konr/(kont — kopT + 1).
We split the input I into a sequence of finished phases
followed by a single unfinished phase (which may not
be present). For a finished phase P, we have kp >
konL, and hence Corollary 13 and Lemma 14 imply
that TC(P) < O(R)-OpT(P). For an unfinished phase
kp < konL, and therefore, by Corollary 13, TC(P) <
O(h(T)) - OPT(P) + O(h(T) - konr, - @). Summing over
all phases of I yields TC(I) < O(R)-OpT(I)+O(h(T)-
kONL . Oé). O

6. IMPLEMENTATION OF TC

Recall that at each time ¢, TC verifies the existence of
a valid changeset that satisfies saturation and maximal-
ity properties (see the definition of TC in Section 4).
Here, we show that this operation can be performed ef-
ficiently. In particular, in the following two subsections,
we will prove the following theorem.

THEOREM 16. TC can be implemented using O(|T|)
additional memory, so that to make a decision at time t,
it performs O(h(T) + max{h(T), deg(T)} - | X¢|) opera-
tions, where deg(T) is a mazimum node degree in T
and X; is the changeset applied at time t (|Xi| = 0 if
no changeset is applied).

Let v; be the node requested at round ¢. Note that we
may restrict our attention to requests that entail a cost
for TC, as otherwise its counters remain unchanged and
certainly TC does not change cache contents. We use
Lemma 1 to restrict possible candidates for changesets
that can be applied at time ¢. First, we note that if
a node v; requested at round t is outside the cache,
then, at time ¢, TC may only fetch some changeset, and
otherwise it may only evict some changeset. Therefore,
we may construct two separate schemes, one governing
fetches and one for evictions.

In Section 6.1, using Lemma 1, we show that after
processing a positive request, TC needs to verify at
most h(T) possible positive changesets, each in constant
time, using an auxiliary data structure. The cost of up-
dating this structure at time ¢ is O(h(T) + h(T) - | X¢]).

The situation for negative changesets is more com-
plex as even after applying Lemma 1 there are still ex-
ponentially many valid negative changesets to consider.

In Section 6.2, we construct an auxiliary data structure
that returns a viable candidate in time O(h(T")+deg(T)-
|X¢|). The update of this structure at time ¢ requires
O(h(T) + deg(T) - | X¢|) operations.

6.1 Positive Requests and Fetches

At any time ¢ and for any non-cached node u, we may
define P;(u) as a tree cap rooted at u containing all non-
cached nodes from T'(u). During an execution of TC,
we maintain two values for each non-cached node wu:
cnty(Py(u)) and |Py(u)|. When a counter at node v is
incremented, we update cnty(P;(u)) for each ancestor u
of v (at most A(T) updated values). Furthermore, if
a node v changes its state from cached to non-cached
(or vice versa), we update the value of |P,(u)| for any
ancestor u of v (at most h(T) updates per each node
that changes the state). Therefore, the total cost of
updating these structures at time ¢ is at most O(h(T) +
W(T) - |X).

By Lemma 1, a positive valid changeset fetched at
time ¢ has to contain v; and is a single tree cap. Such
a tree cap has to be equal to P;(u) for u being an an-
cestor of v;. Hence, we may iterate over all ancestors u
of vy, starting from the tree root and ending at v, and
we stop at the first node u, for which P;(u) is saturated
(i.e., enty(Pi(w)) > |Pi(u)] - «). If such a w is found,
the corresponding set P;(u) satisfies also the maximality
condition (cf. the definition of TC) as all valid change-
sets that are supersets of P;(u) were already verified
to be non-saturated. Therefore, in such a case, TC
fetches P;(u). Otherwise, if no saturated changeset is
found, TC does nothing. Checking all ancestors of v,
can be performed in time O(h(T)).

6.2 Negative Requests and Evictions

Handling evictions is more complex. If the request
to node v; at round ¢ was negative, Lemma 1 tells us
only that the negative changeset evicted by TC has
to be a tree cap rooted at u, where u is the root of
the cached tree containing v;. There are exponentially
many such tree caps, and hence their naive verifica-
tion is intractable. To alleviate this problem, we intro-
duce the following helper notion. For any set of cached
nodes A and any time ¢, let

valy(A) = enty(A) — |A] - a + T||A+ T
Note that for any non-empty set A, val;(A) # 0 as the
first two terms are integers and |A|/(|T|+ 1) € (0,1).
Furthermore, val; is additive: for two disjoint sets A
and B, val;(AU B) = val;(A) + val;(B). For any time ¢
and a cached node u, we define

Hi(u) = arg mgx{valt(D) : D is a non-empty tree cap
rooted at u} .

Our scheme maintains the value H(u) for any cached
node u. To this end, we observe that H;(u) can be



defined recursively as follows. Let Hj(u) = Hi(u) if
valy(Hy(uw)) > 0 and H{(u) = @ otherwise. Then, for
any node v and time ¢, by additivity of val,

Hy(u) = {u} U L] Hi(w) .
w is a child of u
Each cached node u keeps the value val;(H¢(u)). Note
that set Hy(u) itself can be recovered from this informa-
tion: we iterate over all children of w (at most deg(T')
of them) and for each child w, if val;(H(w)) > 0, we
recursively compute set H;(w). Thus, the total time for
constructing Hy(u) is O(deg(T) - |Hy(u)]).

During an execution of TC, we update stored values
accordingly. That is, whenever a counter at a cached
node v; is incremented, we update val,(H;(u)) values
for each cached ancestor u of v, starting from u = v,
and proceeding towards the cached tree root. Any such
update can be performed in constant time, and the to-
tal time is thus O(h(T)). For a cache change, we pro-
cess nodes from the changeset iteratively, starting with
nodes closest to the root in case of an eviction and fur-
thest from the root in case of a fetch. For any such
node u, we appropriately stop or start maintaining the
corresponding value of val,(H;(u)). The latter requires
looking up the stored values at all its children. As u
does not have cached ancestors, sets H; (and hence also
the stored values) at other nodes remain unchanged. In
total, the cost of updating all H; values at time ¢ is at
most O(h(T) + deg(T) - | X4]).

Finally, we show how to use sets H; to quickly choose
a valid changeset for eviction. Recall that for a negative
request vy, the changeset to be evicted has to be a tree
cap rooted at u, where u is the root of a cached subtree
containing v;. For succinctness, we use H" to denote
Hy(u). We show that if val,(H") < 0, then there is no
valid negative changeset that is saturated, and hence
TC does not perform any action, and if val,(H*) > 0,
then H" is both saturated and maximal, and hence TC
may evict H".

1. First, assume that val;(H") < 0. Then, for any
tree cap X rooted at w, it holds that cnty(X) —
| X a < val(X) < val,(H") < 0, i.e.,, X is not
saturated, and hence cannot be evicted by TC.

2. Second, assume that val,(H*) > 0. As cut(H") —
|H"| - « is an integer and |H"|/(|T| + 1) < 1, it
holds that cnt:(H") — |H"|- o > 0, i.e., H" is sat-
urated. Furthermore, by Lemma 1, cnt,(H*) <
|H"| - «, and therefore cnt,(H") — |H"| - o = 0,
e, valy(H") = |H"|/(|T|+1). It remains to show
that H" is maximal, i.e., there is no valid satu-
rated changeset Y O H". By Lemma 1, Y has to
be a tree cap rooted at u as well. If Y was satu-
rated, valy(Y) = ent, (V) — Y] -a+|Y|/(|T|+1) >
Y|/(|T|+1) > |H"|/(|T| + 1) = vals(H"), which
would contradict the definition of H™.

Note that node u can be found in time O(h(T)), and

the actual set H* (of size | X¢|) can be computed in time
O(deg(T)-|X¢|). Therefore the total time for finding set
| X¢| is O(h(T) + deg(T) - [ Xi]).

6.3 Practical Considerations

In practical implementations, one may also resort to
standard techniques such as sampling. Namely, for each
request that costs 1 (that would normally entail counter
updates), we toss a biased coin. Then, we ignore this
request in counter updates with probability (1—1//a)
and we increment a corresponding counter by /o with
probability 1/+/a. This modification can tremendously
speed up the execution of the algorithm, while sacrific-
ing the (expected) competitive ratio only by a constant
factor. Details will be given in the full version of the

paper.

7. CONCLUSION

This paper attended to a novel variant of online pag-
ing which finds applications in the context of IP rout-
ing networks where forwarding rules can be cached. We
presented a deterministic online algorithm that achieves
a provably competitive tradeoff between the benefit of
caching and update costs. We believe that our work
opens interesting directions for future research. Most
importantly, it will be interesting to study the optimal-
ity of the derived competitive ratio.
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APPENDIX
A. PROOF OF LEMMA 1

Before showing Lemma 1 (restated below for conve-
nience), we show the following technical claim.

CramM 17. For any phase P, the following invariants
hold for any time t > begin(P):

1. ent—1(X) < |X| -« for a valid changeset X for Cy,

2. enty(X) < |X| -« for a valid changeset X for Cy,

3. any changeset X with property cnt;(X) = |X| - «

contains the node requested at round t.

PROOF. First observe that Invariant 1 (for time t)
along with the fact that round ¢ contains only one re-
quest immediately implies that cnt(X) < enty—1(X) +
1< (|X|'a—1)+1=|X| «, ie., Invariant 2 for time ¢.
Furthermore the equality may hold only for changesets
containing the node requested at round ¢, which implies
Invariant 3 for time t¢.

It remains to show that Invariant 1 holds for any
step t > begin(P). Invariant 1 is trivially true for
t = begin(P)+1 as cnt;—1(X) = 0 then. Let t+1 be the
earliest time in phase P for which Invariant 1 does not
hold; we will then show a contradiction with the defini-
tion of TC or a contradiction with other Invariants at
time ¢. That is, we assume that there exists a positive
changeset X for Cy1q such that cnt,(X) > |X| - « (the
proof for a negative changeset is analogous). Note that
TC must have performed an action (fetch or eviction)
at time ¢ as otherwise X would be also a changeset for
Cy = Ci1q with enty(X) > | X| - o, which means that X
should have been applied by TC at time ¢t. We consider
two cases.

If TC fetches a positive changeset Y at time ¢, Cryq1 =
C:UY and enty(Y) = |Y]-a. Then, YU X is a changeset
for Cy, and cnt (Y U X) > |Y U X| - . This contra-
dicts the maximality property of set Y chosen at time ¢
by TC.

If TC evicts a negative changeset Y at time ¢, Cyy1 =
Cy \'Y. Invariant 2 and the definition of TC implies
ent(Y) = |Y| - «, and thus, by Invariant 3, Y contains
the node requested at round t. As X NY C Cy, X NY
does not have any positive requests at time ¢, and there-
fore ent; (X \Y) = enty(X) > | X|-a > | X\ Y] .
By Invariant 2, cnt,(X \'Y) < | X \ Y] - «, and hence
enty (X \Y) =|X \ Y| a. This contradicts Invariant 3
as X \ 'Y cannot contain the node requested at round ¢
(because Y contains this node). 0O

LEMMA 1. Fiz any time t > begin(P). For any valid
changeset X for Cy, it holds that enty(X) < |X| - a. If
a changeset X is applied at time t, the following prop-
erties hold:

1. X contains the node requested at round t,

2. enty(X) = |X| -«

3. enty(Y) < |Y |-« for any valid changeset Y for Ciiq
(note that Cyy1 is the cache state right after appli-
cation of X ),

4. X is a tree cap of a tree from Ciyq if X is positive
and it is a tree cap of a tree from Cy if X is negative.

PROOF. The inequality cnt:(X) < |X| - « is equiva-
lent to Invariant 2 of Claim 17. Assume now that X is
applied at time ¢. By the definition of TC, cnt,(X) >
|X| - @, and thus ent,(X) = |X| - «, i.e., Property 2
follows. Then, Invariant 3 of Claim 17 implies Prop-
erty 1. Finally, Invariant 1 of Claim 17 for time ¢ + 1 is
equivalent to Property 3.

To show Property 4 of the lemma, observe that the
changeset X applied at time ¢ cannot be a disjoint
union of two (or more) valid changesets X; and X5. By
Property 2, |X| - a = enty(X) = centy(X1) 4 enty(X3).
If enty(X1) < |X1] - @ or cnty(Xs) < |Xa| - «, then
enty(X7) 4+ enty(Xo) < (| Xq| + [ X2|) - = |X| - a,
a contradiction. Therefore, cnt(X;) = |X1| - o and
cnty(Xs) = |X2| - @ But then Invariant 3 of Claim 17
would imply that both X; and X5 contain a node re-
quested at time t, which is a contradiction as they are
disjoint.

Therefore, if X is a positive changeset applied at t,
then X is a single tree cap of a tree from subforest Cyy1,
and likewise if X is negative, then X is a single tree cap
of a tree from subforest C;. 0O

B. MINIMIZING FORWARDING
TABLES USING TREE CACHING

In this section, we present a formal argument showing
why we can use any g-competitive online algorithm Ap
for the tree caching problem to obtain a 2¢g-competitive
online algorithm A that minimizes forwarding tables.

Namely, we take any input I for the latter problem
and create, in online fashion, an input I for the tree
caching problem in a way described in Section 2. For
any solution for I, we may replay its actions (fetches
and evictions) on I and vice versa. However, there is one
place, where these solutions may have different costs.
Recall that an update of a rule stored at node v in I is
mapped to a chunk of « negative requests to v in Ip.
It is then possible that an algorithm for I modifies
the cache during a chunk. An algorithm that never
performs such an action is called canonic.

To alleviate this issue, we first note that any algo-
rithm B for I7 can be transformed into a canonic solu-
tion B’ by postponing all cache modifications that oc-
cur during some chunk to the time right after it. Such
a transformation may increase the cost of a solution on
a chunk at most by « and such an increase occurs only
when B modifies a cache within this chunk. Hence, the
additional cost of transformation can be mapped to the
already existing cost of B, and thus the cost of B’ is at



most by a factor of 2 larger than that of B.

Furthermore, note that there is a natural cost-pre-
serving bijection between solutions to I and canonic
solutions to I (solutions perform same cache modifi-
cations). Hence, the algorithm A for I runs Ap on Ip,
transforms it in an online manner into the canonic so-
lution A%-(Ir), and replays its cache modification on I.
We obtain that

A(I) = Ap(Ir) < 2- Ap(I7)
< 2q-Opt(I7) <2¢-0OPT(I) .

The second inequality follows immediately by the g-
competitiveness of Ap. The third inequality follows by
replaying cache modifications as well, but this time we
take solution OpT(I) and replay its actions on I, cre-
ating a canonic (not necessarily optimal) solution of the
same cost.

C. LOWER BOUND ON THE COMPET-
ITIVE RATIO

THEOREM 18. For any a > 1, the competitive ratio
of any online algorithm for the online tree caching prob-
lem is at least Q(konL/(konL — kopT + 1))

PRrROOF. We will assume that in the tree caching prob-
lem, evictions are free (this changes the cost by at most
by a factor of two). We consider a tree whose leaves cor-
respond to the set of all pages in the paging problem.
The rest of the tree will be irrelevant.

For any input sequence I for the paging problem, we
may create a sequence It for tree caching, where a re-
quest to a page is replaced by a requests to the corre-
sponding leaf. Now, we claim that any solution A for I
of cost ¢ can be transformed, in online manner, into
a solution At for It of cost O(« - ¢) and vice versa.

If upon a request r, an algorithm A fetches r to the
cache and evicts some pages, then At bypasses « cor-
responding requests to leaf r, fetches r afterwards and
evicts the corresponding leaves, paying O(a) times the
cost of A. By doing it iteratively, At ensures that its
cache is equivalent to that of A. In particular, a request
free for A is also free for Ar.

Now take any algorithm At for It. It can be trans-
formed to the algorithm A/, that (i) keeps only leaves
of the tree in the cache and (ii) performs actions only at
times that are multiplicities of « (losing at most a con-
stant factor in comparison to Ar). Then, fix any chunk
of a requests to some leaf ' immediately followed by
some fetches and evictions of A/, leaves. Upon seeing
the corresponding request r’ in I, the algorithm A per-
forms fetches and evictions on the corresponding pages.
In effect, the cost of A is O(1/a) times the cost of Ar.

The bidirectional reduction described above preserves
competitive ratios up to a constant factor. Hence, ap-
plying the adversarial strategy for the paging problem
that enforces the competitive ratio R = kont./(konL —
kopr + 1) [28] immediately implies the lower bound of

{ requests appear
@ (s+1) -« — £ requests appear @ d PP

@ § -« requests appear @ the second eviction

g

@ the first eviction

Figure 4: A troublesome example of a positive
field. Numbers in circles describe the chronol-
ogy of the events.

Q(R) on the competitive ratio for the tree caching prob-
lem. [

D. IMPOSSIBILITY OF EXACT SHIFT-
ING WITHIN POSITIVE FIELDS

In this section, we present an example showing that,
within a positive field, we cannot shift positive requests
down, obtaining a requests in every node, like we did in
the case of negative requests (cf. Corollary 8). T con-
sists of root 7 and two distinct subtrees 77 and T5, each
of size s and containing ¢ leaves.

Suppose that at the beginning TC has the entire
tree T in its cache and the following ordered events hap-
pen (cf. Figure 4).

1. TC evicts T1 U {r} from the cache.

2. (s41)-a— L requests appear one by one at r. The
number of requests is too small to trigger a fetch
of any subtree of T3 U {r}.

3. TC evicts T5 from the cache.

4. s -« requests appear one by one at the root of T7.
This time, the number of requests is too small to
trigger a fetch of any subtree of T'.

5. £ requests appear one by one at r. After the last
one appears, TC fetches the entire T" to the cache.

The evictions happen because of some feasible sequence
of negative requests that is irrelevant from our perspec-
tive.

Now, observe that when requests appear at the root
in the second stage of our construction, 75 is still in the
cache (i.e., does not belong to the field yet). Thus, all
the requests, except for the last ¢ ones can be shifted
down only to nodes from 73. Hence, for large o and s,
shifting can deliver Q(«) requests only to half of the
nodes.

E. STATIC CACHING

In addition to our solution to online tree caching, we
show how to choose a static set of cached nodes, in
the setting where only positive requests are present and
their number is known to the algorithm. More precisely,
let FREQ,, be the total number of positive requests to v.
We want to construct an optimal cache, so that the cost
of an algorithm is minimized. As only positive requests



are present, we may assume that the number of nodes in
the cache is exactly k. We note that the generalization
of this problem when the underlying dependencies do
not form a tree but a directed acyclic graph was shown
to be NP-complete [17].

In the context of our IP routing / SDN application,
this problem corresponds to choosing a fixed subset of
rules that are always in the cache. For example, if the
frequency distribution over the rules is relatively stable,
it may be sufficient to compute a new solution at certain
time intervals only (e.g., every one or two hours).

Notation. From now on, we denote the number of
nodes in the tree T' by n. Our algorithm first introduces
(at most n) additional artificial nodes in T, so that the
resulting tree 7" is binary (each non-leaf has exactly
two children). We call the original, non-artificial nodes
real.

Hence, the problem is to find a tree cap .S of T' consist-
ing of b = n—k real nodes (and any number of artificial
ones) that are outside the cache, so that ) ¢ FREQ,,
the total number of requests to S is minimized.

The Recurrence. We use dynamic programming on
the tree 7. By m < 2n we denote the total size of T’
(including artificial nodes).

For each node v € T" and for each j € [0, b], we define
g(v,7) to be the minimum total cost of a tree cap of
T’(v) consisting of exactly j real nodes. For a leaf v, we
have

0 if j =0,
g(v,j) = { FREQ, if j =1 and v is real,
00 otherwise.

For an internal node v, we exploit the optimal sub-
structure of the solution and use the values computed
at its children, denoted ¢(v) and r(v). Namely, if v is
a real node, then either the selected tree cap of T"(v)
is empty or it contains j > 1 real nodes. In the latter
case, one of these nodes is v itself, i real nodes can be
selected from T"(¢(v)) and j — 1 — ¢ real nodes can be
selected from T”(r(v)). Thus, the recursive formula is
for a real node v is g(v,0) = 0 and for j > 0 it holds
that
9(v,j) = FREQ,+ min {g({(v),i)+g(r(v),j—1-1)} .

0<i<j—1
If v is an artificial node, there are no requests to v and
we have to choose all j elements from both subtrees.
Hence, in this case, for any 7 > 0

o(v.) = min {g(€(v). 1) +9(r(v).5 = )} -

The Algorithm. Our algorithm evaluates the values
of function g, starting from the leaves and continuing
to the root. For any node v and value j € [0,b], it also
records how the minimum was achieved. It then uses
these values, traversing the tree from the root down-
wards to actually recover which nodes should be put

in set S. As explained below, a naive implementation
of this scheme yields a runtime of O(n?), which can be
later improved to O(n?).

THEOREM 19. An optimal static cache can be com-
puted in time O(n?).

Proor. First, we show a simpler but weaker bound.
The algorithm traverses m tree nodes of 7. Com-
putation performed at each node v requires comput-
ing values g(v,j) for j € [0,b]. (The computed values
are stored in a lookup table.) Computing a single en-
try g(v,j) can be performed by taking the minimum
among the j < b entries: each one can be looked up
in constant time. Thus, in total the execution time is
O(m-b*) = O(n-v?).

In most applications, b is of the same order as n which
makes this complexity cubic in n. However, the compu-
tation of function g can be slightly tweaked, which can
tremendously improve the running time.

Namely, for a single node v we compute all the values
g(v,7) at a single fell swoop. Precisely, we traverse the
tree T as before. For a node v, we assign infinities
to all values g(v,7) at the very beginning. Later, we
iterate over all possible values j, € [0,b] and j,. € [0, ]
and try to improve the current value of g(v, 1+ jy + j,)
(or g(v, je + jr) for an artificial node) with the value of
FREQ, + g(¢(v), jeo) + g(r(v), jr).

This alone does not improve the running time of O(m-
b?), but we may neglect the values of of g(¢(v), j,) and
g(r(v),jr) for which we know that they are infinite.
Namely, we only have to iterate j, over the set [0, min{b,
size(£(v))}] and similarly iterate j, over the set [0, min{b,
size(r(v))}], where size(u) denotes the number of real
nodes in 7"(u) (including u).

Computing all entries g(v,j) for a fixed node v (in-
cluding the initialization to infinities) takes then time
O(b + size(€(v)) - size(r(v))). Thus, the total runtime
is O(m - b+ 3, cinner(r) Size(€(v)) - size(r(v)), where
inner(7") is the set of all inner (non-leaf) nodes of 7".

To bound the latter summand, we may write it as
a cardinality of a set Z that contains all possible triplets
(v, z,y) of active nodes, such that z € T(¢(v)) and y €
T'(r(v)). For a given pair of nodes (x, y) there is at most
one value of v, such that (v,z,y) € Z as v has to be
least common ancestor of x and y. This implies that
Z'UEinner(T’) SiZQ(@(’U)) ! SiZG(T‘(U)) = |Z| S m2 = O(nZ)

This gives the desired runtime of O(m - b + n?) =
O(n?). O
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