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Abstract
We introduce a novel method for the rigorous quantitative evaluation of online algorithms that
relaxes the “radical worst-case” perspective of classic competitive analysis. In contrast to prior work,
our method, referred to as randomly infused advice (RIA), does not make any assumptions about
the input sequence and does not rely on the development of designated online algorithms. Rather,
it can be applied to existing online randomized algorithms, introducing a means to evaluate their
performance in scenarios that lie outside the radical worst-case regime.

More concretely, an online algorithm ALG with RIA benefits from pieces of advice generated by
an omniscient but not entirely reliable oracle. The crux of the new method is that the advice is
provided to ALG by writing it into the buffer B from which ALG normally reads its random bits,
hence allowing us to augment it through a very simple and non-intrusive interface. The (un)reliability
of the oracle is captured via a parameter 0 ≤ α ≤ 1 that determines the probability (per round)
that the advice is successfully infused by the oracle; if the advice is not infused, which occurs with
probability 1 − α, then the buffer B contains fresh random bits (as in the classic online setting).

The applicability of the new RIA method is demonstrated by applying it to three extensively
studied online problems: paging, uniform metrical task systems, and online set cover. For these
problems, we establish new upper bounds on the competitive ratio of classic online algorithms that
improve as the infusion parameter α increases. These are complemented with (often tight) lower
bounds on the competitive ratio of online algorithms with RIA for the three problems.
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1 Introduction

Competitive ratio is a widely used metric for evaluating the performance of online algorithms.
It measures the ratio between the performance of an online algorithm and that of an optimal
offline (clairvoyant) algorithm, assuming a worst-case (i.e., adversarial) input sequence. Early
on, it has been observed (see, e.g., [53]) that in practice, many online algorithms outperform
their theoretical worst-case guarantees. Indeed, in realistic scenarios, the online algorithms
tend to “enjoy a good fortune” and rarely encounter the theoretical pitfalls that realize the
competitiveness lower bounds (cf. [41]).

This phenomenon has led to extensive research on the analysis of online algorithms
beyond the extreme worst-case nature of traditional competitive analysis (see [38] for a recent
survey). A prominent approach in this regard is to restrict the power of the adversary that
decides on the input sequence, giving rise to the methods of locality of reference [3, 7, 2],
access graph [20], smoothed analysis [47, 15], random arrival order [4, 6, 5], independent
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Figure 1 In each round, the algorithm reads its random bits from buffer B. Under the RIA
model, the content of this buffer is replaced by the oracle’s advice for that round with probability α,
independently of other rounds.

sampling [27], diffused adversaries [41], and distributional analysis [48, 34]. Another approach
is to relax the competitive analysis definition, as done in resource augmentation [50], loose
competitiveness [53], and competitiveness with high probability [39]. See also the surveys [29,
23] for additional measures.

In this paper, we wish to advance the study of (randomized) online algorithms beyond
worst-case competitive analysis by offering a radically new point of view on the concept of
“enjoying a good fortune” (in terms of avoiding the competitiveness pitfalls). Our approach
does not restrict the power of the adversary, hence we do not need to justify any assumptions
on the request sequence. Moreover, we use the standard definition of competitive analysis
(with no relaxations). Last but not least, in contrast to some existing “beyond worst-case”
methods, which are limited to certain types of online problems (e.g., locality of reference and
access graph), our new method is very general and can be applied to seemingly any online
problem.

So, how do we interpret “good fortune” on behalf of a randomized online algorithm ALG
without making any assumptions on ALG’s input sequence? The answer is simple: we look
at the outcome of ALG’s random coin tosses. That is, to make ALG more fortunate, all we
have to do is to increase the chances of getting good such outcomes.

This raises another question: what makes one outcome of ALG’s random coin tosses
better than another? To answer this question, we recruit an omniscient oracle that generates
advice for ALG in each round of the execution. The crux of our method, called randomly
infused advice (RIA), is that the oracle attempts to write this advice into the buffer B from
which ALG normally reads its random bits. To quantitatively control ALG’s good fortune,
we introduce an infusion parameter 0 ≤ α ≤ 1, which determines the probability that the
advice is (successfully) infused by the oracle in each round (independently); if the advice is
not infused — an event occurring with probability 1− α — then the buffer B contains fresh
random bits (as in the classic online setting). Refer to Figure 1 for an illustration.

We emphasize that the interface between the randomized online algorithm ALG and the
oracle is “non-intrusive”, i.e., it is defined on top of the standard computational model of
(randomized) online algorithms (a.k.a. request-answer games). Therefore, the RIA method is
suitable for the analysis of existing online algorithms (including classic ones), facilitating
the evaluation of their performance beyond the extreme worst-case nature of traditional
competitive analysis. This is in contrast to other advice models for online algorithms
(discussed in Section 1.2) in which the oracle-algorithm interface is based on a designated
buffer (or tape) from which the algorithm reads the advice. As such, these models require
the development of new, model-specific, algorithms and cannot be applied to existing ones.

Notice that the RIA model does not impose any limitations on the size of the buffer B,
and through it, on the advice size (or the number of random bits) provided to ALG in
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each round. This raises the concern of making the online algorithm “too powerful” as the
(successfully) infused advice may hold excessive information regarding the future requests. To
overcome this concern, we restrict our attention to randomized online algorithms which are
randomness-oblivious, namely, in each round, ALG has access to past requests, past answers,
the current request, and the current content of the buffer B (which contains the current
advice or random bits), however ALG cannot access the content of B in previous rounds.
Indeed, all algorithms analyzed in this paper are randomness-oblivious.

The main motivation for studying the RIA method comes from analyzing the performance
of randomized online algorithms in scenarios that lie outside the “radical worst-case” regime,
assumed in the classic online computation literature. In particular, this new method allows us
to compare between different online algorithms that exhibit the same performance guarantees
in worst-case scenarios, possibly separating between them in terms of their performance once
the scenarios get “a little bit better”, and to so without making any explicit assumptions
about the request sequence (or the probability distribution thereof).

Another motivation is that the RIA model provides an abstraction for an unreliable
predictor (whose role is assumed by the oracle) whose “mistakes” take a random (rather
than worst-case) flavor, where the infusion parameter α indicates the (expected) fraction of
rounds in which the predictor is correct. In this regard, the non-intrusive interface between
the online algorithm and the oracle gives the RIA model a distinctive advantage over existing
advice models for online algorithms as it enables the analysis of standard online algorithms
in scenarios that include an unreliable predictor, while retaining their worst-case guarantees.

1.1 Our Contribution

On top of the conceptual contribution that lies in introducing the RIA model, we make the
following technical contribution.

Upper bounds. The applicability of the new RIA model is demonstrated on three exten-
sively studied online problems: the paging problem [50], for which we analyze the classic
RandomMark algorithm [32]; the uniform metrical task system (MTS) problem [21], for
which we analyze the classic UnifMTS algorithm;1 and the unweighted online set cover
problem [9], for which we analyze the influential primal-dual algorithm [24, Ch. 4] with
randomized rounding (referred to as RandSC). In all cases, our findings are similar to what
is called “robustness” and “consistency” in the literature dedicated to online algorithms with
predictions [42, 46]: when augmented with RIA, the competitive ratio of these algorithms is
never worse than the original, and improves asymptotically as α→ 1. Our results are cast
in the following three theorems, where we denote the k-th harmonic number by Hk ≈ log k;
we emphasize that in all cases, neither the online algorithm nor the oracle are aware of the
infusion parameter α.

▶ Theorem 1.1. The competitive ratio of RandomMark augmented with RIA with infusion
parameter 0 ≤ α ≤ 1 on instances of cache size k is at most min{2Hk, 2

α}.

▶ Theorem 1.2. The competitive ratio of UnifMTS augmented with RIA with infusion
parameter 0 ≤ α ≤ 1 on n-state instances is at most min{2Hn, 2

α + 2}.

1 Due to spatial considerations, the upper bound for uniform MTS is omitted from this version of the
paper. Refer to the full version [31] for the upper bound description and analysis.
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▶ Theorem 1.3. The competitive ratio of RandSC augmented with RIA with infusion
parameter 0 ≤ α ≤ 1 on instances with n elements and maximum element degree d is at most
O(min{log d log n, log n

α }).

Lower bounds. On the negative side, we prove that the upper bound promised in The-
orem 1.1 is asymptotically tight for the class of lazy algorithms, which are not allowed to
change their cache configuration unless there is a page miss.

▶ Theorem 1.4. There does not exist a lazy (randomness-oblivious) online paging algorithm
augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on instances
of cache size k is better than min{Hk, 1

α}.

Omitting the restriction to lazy algorithms, we can establish a weaker lower bound.

▶ Theorem 1.5. There does not exist a (randomness-oblivious) online paging algorithm
augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on instances
of cache size k is better than min{Hk, 1

k·α}.

The uniform MTS problem generalizes the paging problem on instances that include
n = k + 1 pages. As Theorems 1.4 and 1.5 hold (already) for such instances, their promised
lower bounds are transferred to the uniform MTS problem, where laziness translates to online
MTS algorithms that may switch state only when the processing cost is positive [33] (an
algorithm class that includes UnifMTS).

▶ Theorem 1.6. There does not exist a lazy (randomness-oblivious) online uniform MTS
algorithm augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio
on n-state instances is better than min{Hn−1, 1

α}.

▶ Theorem 1.7. There does not exist a (randomness-oblivious) online uniform MTS algorithm
augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive ratio on n-state
instances is better than min{Hn−1, 1

(n−1)·α}.

For online set cover, we establish a lower bound for lazy algorithms, namely, online
algorithms which are allowed to buy a set only if it contains the current (uncovered) element
(an algorithm class that includes RandSC).

▶ Theorem 1.8. There does not exist a lazy (randomness-oblivious) unweighted online set
cover algorithm augmented with RIA with infusion parameter 0 ≤ α ≤ 1 whose competitive
ratio on instances with maximum element degree d is better than min{ 1

2 log d, 1
2·α}.

1.2 Novelty and Additional Related Work

Models of Advice. A well-known and suitable advice model for machine-learned predic-
tions is the model of online algorithms with untrusted advice introduced by Lykouris and
Vassilvitskii [42], where the existing literature includes papers on paging [42, 49, 37, 13],
metrical task system [11], and online set cover via the primal-dual approach [12]. In this
model, the predictor may be faulty, and the competitive ratio depends on its error so that
for low error, the algorithm should perform close to the offline optimum (a.k.a. consistency),
while even for large error, the algorithm should still fallback to guarantees similar to those of
non-augmented online algorithms (a.k.a. robustness).

Another well-known advice model is the perfect advice model [30, 18] under which many
online problems have been studied, including paging, metrical task system [22], and online set
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cover [28]. In this model, the oracle is fully trustworthy, and its power is therefore quantified
via the size (i.e., number of bits) of the advice provided to the online algorithm. This model
is related to lookahead [35], where an algorithm is given some number of future requests in
advance. The model of perfect advice was later extended to untrusted advice, retaining its
focus on measuring the required advice size [10].

Unlike these two advice models, the RIA model does not require any new algorithmic
features (e.g., a designated advice tape) and is therefore applicable to existing (standard)
online algorithms. Furthermore, our model does not limit the advice size, unlike the perfect
advice model, and still allows to arrive at asymptotically tight lower bounds under natural
assumptions, in contrast to the machine-learned prediction model where no general lower
bounds are known.

Online algorithms for paging, MTS, and set cover. Two optimally competitive
algorithms for paging are known: PARTITION [43] and EQUITABLE [1]. For the uniform
MTS problem, a (2Hn)-competitive algorithm was presented in [21], later improved to
Hn + O(

√
log n) in [36]; the latter result nearly matches the Hn lower bound of [21].

For online set cover, the state-of-the-art competitive ratio upper bounds are O(log m log n)
for the weighted case [9] and O(log m log(n/OPT)) for the unweighted case [25], where m and
n denote the number of sets (an upper bound on the maximum element degree d) and the
number of elements, respectively; interestingly, both bounds can be realized by deterministic
online algorithms. On the negative side, no (randomized) online algorithm has a competitive
ratio better than Ω(log m) [40] and no deterministic online algorithm has a competitive ratio
better than Ω(log m log n/(log log m + log log n)) [9]. If the (randomized) online algorithm is
required to admit a polynomial time implementation, then the competitiveness lower bound
improves to Ω(log m log n) assuming that NP ⊈ BPP [40].

2 Online Algorithms with Randomly Infused Advice

We begin by recalling standard definitions of online algorithms as request-answer games [17].
Our model of online algorithms with randomly infused advice is then defined as a generaliza-
tion of this model.

2.1 Online Algorithms as Request-Answer Games

Consider a finite sequence σ = ⟨r1, . . . , r|σ|⟩ of requests, where each request ri is taken from
a set R. A solution for σ is a sequence λ = ⟨a1, . . . , a|σ|⟩ of answers, where each answer ai

is taken from a set A. For a given minimization problem, the quality of a solution λ for
a request sequence σ is determined by means of a cost function f : R|σ| ×A|σ| → R ∪ {∞}.2
Let OPT(σ) = infλ∈A|σ| f(σ, λ) denote the cost of an optimal solution for σ.

In the realm of online algorithms, the requests are revealed one-by-one, in discrete rounds,
so that upon receiving request ri in round i, a (randomized) online algorithm ALG outputs
the (random) answer ai irrevocably. That is, the solution λALG = ⟨a1, . . . , a|σ|⟩ produced
by ALG is defined so that each answer ai is computed as a function of (1) the request
subsequence r1, . . . , ri; (2) the answer subsequence a1, . . . , ai−1; and (3) round i’s random bit

2 We restrict our attention to minimization problems as these are the problems addressed in the current
paper. Extending our setting to maximization problems is straightforward.
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string Bi ∈R {0, 1}L, where the parameter L ∈ Z≥0 is specified by the algorithm’s designer
(possibly as a function of the parameters of the problem).3

The performance of an online algorithm ALG is measured via competitive analysis: we say
that ALG is c-competitive if there exists a constant b (that may depend on the parameters
of the problem) such that E[ALG(σ)] ≤ c · OPT(σ) + b for any request sequence σ, where
ALG(σ) is the random variable that takes on the cost of the solution produced by ALG in
response to a request sequence σ. The request sequence σ is assumed to be determined by a
malicious adversary; we stick to the convention of an oblivious adversary [19, Ch. 4] which
means that the adversary knows ALG’s description, but is unaware of the outcome of ALG’s
random coin tosses.

2.2 Randomly Infused Advice

In this paper, we introduce an extension of online algorithms, referred to as online algorithms
with randomly infused advice (RIA). In the RIA model, an algorithm ALG is assisted by
a powerful, yet not entirely reliable, oracle that has access to the entire request sequence σ.
Formally, for any request sequence σ = ⟨r1, . . . , r|σ|⟩ and round 1 ≤ i ≤ |σ|, the oracle O
is defined by an advice function Oσ,i : Ai−1 → {0, 1}L that maps each answer subsequence
⟨a1, . . . , ai−1⟩ to a bit string Oσ,i(a1, . . . , ai−1) ∈ {0, 1}L, referred to as the round i’s advice.
Notice that the length of the advice bit string is equal to the length L of ALG’s random bit
string.

The RIA model is associated with an infusion parameter 0 ≤ α ≤ 1 that quantifies the
(un)reliability of the oracle O. Specifically, in each round i, the bit string Bi (provided
to the online algorithm in that round) is now determined based on the following random
experiment (independently of the other rounds): with probability α, the round i’s advice is
infused into Bi, that is, Bi ← Oσ,i(a1, . . . , ai−1); with probability 1− α, the bit string Bi is
picked uniformly at random, that is, Bi ∈R {0, 1}L.

In other words, in each round i where the infusion is successful (an event occurring with
probability α), the oracle’s advice “smoothly” substitutes the random bit string Bi before it
is provided to ALG; if the infusion is not successful, then Bi remains a random bit string.
We emphasize that ALG and O are not aware (at least not directly) of whether the advice is
successfully infused in the round i, nor are they aware of the infusion parameter α itself.

The competitive ratio of online algorithms ALG with RIA is typically expressed as
a function of the infusion parameter α, where the extreme case of α = 0 corresponds to
standard online computation (with no advice). The ultimate goal is to provide guarantees
on the competitiveness of ALG for any 0 ≤ α ≤ 1.

2.3 Randomness-Oblivious Online Algorithms

Recall that the aforementioned definition of online algorithms dictates that when the online
algorithm ALG determines the answer ai associated with round i, it is aware of the requests
ri′ and answers ai′ associated with past rounds i′ < i, as well as the request ri and random
bit string Bi associated with the current round i, however it is not aware (at least not directly)
of the random bit strings Bi′ associated with past rounds i′ < i. This model choice is made
to prevent an online algorithm ALG with RIA from passing information received through

3 We use a single parameter L (that is often kept implicit in the online algorithm’s description) for
simplicity of the exposition; it can be easily generalized to a (not necessarily bounded) sequence
L1, L2, . . . of round-dependent parameters.
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the (successfully infused) advice to future rounds, thus over-exploiting the lack of an explicit
(model specific) bound on the length of the random / advice bit strings. To distinguish the
online algorithms that adhere to this formulation from general online algorithms (that may
maintain a persistent memory that encodes past random bits), we refer to the former as
randomness-oblivious online algorithms.

3 Paging

In the online paging problem [50], we manage a two-level memory hierarchy, consisting of
a slow memory that stores the set of all n pages, and a fast memory, called the cache, that
stores any size k subset of pages. We are given a sequence σ of requests to the pages. If
a requested page is not in the cache, a page fault occurs, and the page must be moved to the
cache. Since the cache is limited in size, we must specify which page to evict to make space
for the requested page. The goal is to minimize the number of page faults.

In this section, we analyze an elegant randomized online algorithm RandomMark, in-
troduced by Fiat, Karp, Luby, McGeoch, Sleator and Young [32], in the randomly infused
advice framework. The algorithm RandomMark maintains a bit associated with each page
in the cache. Initially the bits of all pages are set to 0 (the pages are unmarked), and after
requesting a page, we bring it to the cache if it is not in the cache yet, and we set its bit to 1
(we mark the page). To bring a page to the cache, we may need to evict another page to
make space for it. In such a case, RandomMark evicts a page uniformly at random chosen
from the unmarked pages. If no unmarked page exists, we unmark all pages. This strategy
has been shown to be 2Hk-competitive [32], where Hk is the harmonic number, and no
randomized algorithm can be better than Hk-competitive.

3.1 RandomMark With Infused Advice

With help of randomness, the classic RandomMark decides on the final candidate to evict:
a random node among unmarked pages. With infused advice, in some rounds the randomness
source used by RandomMark contains advice instead of random bits. The presence of
clairvoyent advice brings obvious advantages, but also brings challenges: not all pages can
be evicted, only the unmarked ones.

Unmarked Longest-Forward-Distance Oracle. An optimal offline algorithm for paging
is to evict the item with the access time furthest in the future [16], also known as longest
forward distance (LFD) algorithm. However, we cannot directly design an oracle for Ran-
domMark around LFD, as it may advise to evict a marked page, but RandomMark never
evicts marked pages. Hence, we propose a variant of this algorithm that can act as an oracle
for RandomMark. Such an oracle, denoted OULF D, advises RandomMark to evict the page
with the longest forward distance among the unmarked items of RandomMark.

Analysis of RandomMark. How well can RandomMark perform with infused advice?
To find out, we consider the RandomMark algorithm assisted with the oracle OULF D, and
we express the algorithm’s competitive ratio of in terms of the infusion parameter α (the
probability of receiving advice in each round). Later in this paper, we will show that
RandomMark with OULF D is asymptotically optimal (Theorem 6.4).

▶ Theorem 3.1. The competitive ratio of RandomMark with the oracle OULF D with RIA on
instances of cache size k (against the oblivious adversary) is at most min{2Hk, 2

α}, where
Hk is the k-th harmonic number, and 0 ≤ α ≤ 1 is the infusion parameter.
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Before proving this theorem, we recall the definition of a k-phase partitioning of an input
sequence, and we derive sufficient conditions to stop incurring further page faults in a phase.

We begin by recalling basic definitions from the analysis of RandomMark by [32]. We
consider the k-phase partition of the input sequence σ, following the notation from [19]:
phase 0 is the empty sequence, and each phase i > 0 is the maximal sequence following the
phase i− 1 that contains at most k distinct page requests since the start of the ith phase. In
a phase of any marking algorithm, a page requested in the phase is stale if it is unmarked
but was marked in the previous phase, and a page is clean if it is neither stale nor marked.

In addition to these standard definitions, we define the set of vanishing pages as the set
of the pages requested in the previous phase, but not in the current phase. We claim that
after evicting all vanishing pages, marking algorithms incur no further cost in the phase,
since a configuration is reached where all the remaining requests in the current phase are
free (page hits).

▶ Lemma 3.2. Fix an input sequence σ, consider its k-phase partition, and fix any phase P

that is not the first or the last phase. Then, (1) we have exactly c vanishing pages, where
c is the number of clean pages in the phase; and (2) after evicting all vanishing pages, no
marking algorithm for paging incurs further cost in the phase.

Proof. In the phase P , we have exactly k requests to distinct pages: to k − c stale pages
and to c clean pages. Only the clean pages can replace the vanishing pages, hence we have
exactly c vanishing pages. Hence, the first claim holds.

If at any point all c vanishing pages are evicted, this means that all c clean pages were
requested in the phase already. The remaining requests in the phase can concern only stale
pages. As no vanishing pages remain in the cache, the cache consists of c clean pages and
k − c stale pages. Hence, after evicting all vanishing pages, any marking algorithm incurs no
further cost in the phase, and the second claim holds. ◀

Finally, we prove our main claim for paging: RandomMark is min{2Hk, 2
α}-competitive.

We repeat the classic arguments of [32] to arrive at the bound 2Hk, and we analyze the offline
algorithm unmarked longest forward distance, employed by the oracle that probabilistically
interacts with the oracle, to arrive at the bound 2

α .

Proof of Theorem 3.1. Fix any input sequence σ and consider its k-phase partition. Con-
sider any phase that is not the first or the last one. Let c be the number of clean pages in
the phase.

We claim that the expected number of page faults is upper bounded by c/α. If the
algorithm incurs a page fault, and it receives the oracle’s advice, and there are still some
vanishing pages in the cache, then the algorithm evicts a vanishing page; this follows since
the vanishing pages are not requested in the current phase, hence they have larger forward
distance than other stale pages, and the vanishing pages are unmarked. By Lemma 3.2,
evicting all vanishing pages means that no further cost is incurred throughout the phase,
hence the number of page faults in the phase is upper bounded by the number of page faults
until the algorithm receives c rounds of advice from the oracle (not necessarily consecutive).
The expected number of page faults until receiving c rounds of advice is c/α, since this is
the expected number of independent tosses of α-biased coin until getting c heads outcomes.

Next, we repeat the classic arguments of [32]: the expected number of page faults of the
algorithm is also upper bounded by c ·Hk. Consider an i-th request to a stale page in the
phase for i = 1, 2, 3, . . . , s. Let c(i) denote the number of clean pages requested in the phase
immediately before the i-th request to a stale page, and let S(i) denote the set stale pages
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that remain in the cache before the i-th request to a stale page, and let s(i) = |S(i)|. For
i = 1, 2, 3, . . . , s, we compute the expected cost of the i-th request to a stale page. When
the algorithm serves the i-th request to a stale page, exactly s(i) − c(i) of the s(i) stale
pages are in the cache. The stale pages are in the cache with equal probability, say p, since
these are never evicted with the help of advice, but are evicted uniformly from unmarked
pages when a page fault occurs in rounds without advice. The vanishing pages are in the
cache with probability at most p, since they can be evicted both in the rounds with and
without the advice. For the all s(i) stale pages the probability of being in the cache sums to
1, hence p ≤ 1/s(i). Fix a request to a stale page. The page is in the cache with probability
(s(i)− c(i)) · p, hence the expected cost of the request is

1− (s(i)− c(i)) · p ≤ 1− s(i)− c(i)
s(i) = c(i)

s(i) ≤
c

k − i + 1 .

Hence, the total cost of the request to the stale pages is
∑s

i=1 c/(k − i + 1) ≤
∑k

i=2 c/i =
c · (Hk − 1). The total cost in the phase includes the cost of serving the clean page and stale
pages, in total c ·Hk.

We conclude that the number of page faults of the algorithm in a phase is upper-bounded
by both c ·Hk and c/α. By arguments of [32, Theorem 1], the amortized number of faults
made by OPT during the phase is at least c/2. Summing over all phases but the first and the
last one, the competitive ratio is at most min{2Hk, 2

α}. The first and the last phase incurs
cost bounded by 2k, which we account in the additive in the competitive ratio. ◀

The above analysis is asymptotically tight with the lower bound given in Theorem 6.3.
However, for the special case n = k + 1, the result is tight: the competitive ratio of
RandomMark with the oracle OULF D is min{Hk, 1

α}, since in each phase but the last phase,
any offline algorithm pays at least 1, and the number of clean pages is also 1.

The algorithm RandomMark with perfect advice (α = 1) is equivalent to an offline
algorithm that evicts the unmarked item with the longest forward distance. The Theorem 3.1
implies that this algorithm is optimal for n = k + 1, and a 2-approximation for any n.

4 Uniform Metrical Task System

In the metrical task system (MTS) problem, we are given a finite metric space (S, d) consisting
of a set S = {s1, . . . , sn} of n states and a distance function d : S2 → R≥0 assumed to be
a metric. A task r ∈ Rn

≥0 is an n-sized vector of non-negative processing costs, where the
entry r(i) is defined to be the processing cost of serving r in state si. Given a sequence
σ = r1, . . . , r|σ| of tasks, the cost of a schedule s1, . . . , s|σ| is the sum between the total
transition cost and the total processing cost. The goal in the MTS problem is to find
a schedule of minimal cost. We focus on algorithms for the MTS problem in the online
setting, where the state si that serves task ri is chosen without knowing the subsequence
ri+1, . . . , r|σ|.

In this section, we focus on the MTS problem on a uniform metric, i.e., the metric where
d(si, sj) = 1 for all i ̸= j. We shall present a randomized algorithm, henceforth referred
to as UnifMTS, with advice. This algorithm is inspired by the classical 2Hn-competitive
algorithm by [21].

Consider a sequence σ = r1, . . . , r|σ| of tasks given at times t = 1, . . . , |σ|. For an integer
i ∈ {1, . . . , |σ|}, and i ≤ ℓ < ℓ′ ≤ i + 1, let us define the processing cost π(sj , ℓ, ℓ′) of being
in state sj in the time interval [ℓ, ℓ′] as π(sj , ℓ, ℓ′) = (ℓ′ − ℓ) · ri(j). We now naturally



Y. Emek, Y. Gil, M. Pacut and S. Schmid 9

extend this notion to time intervals [ℓ, ℓ′] such that i ≤ ℓ ≤ i + 1 < ℓ′ ≤ |σ|+ 1 by defining
π(sj , ℓ, ℓ′) = π(sj , ℓ, i + 1) + π(sj , ⌊ℓ′⌋, ℓ′) +

∑⌊ℓ′⌋−1
k=i+1 π(sj , k, k + 1).

We define a partition of [1, |σ| + 1] into time intervals [t0, t1], [t1, t2], . . . , [tm−1, tm] ⊆
[1, |σ|+ 1] called phases such that t0 = 1 and tm = |σ|+ 1. The i-th phase starts at time
ti−1. We say that a state sj is saturated for phase i at time t > ti−1 if the processing cost
associated with being in sj during the entire time interval [ti−1, t] is at least 1. The i-th
phase ends in time ti, defined to be the minimal time in which all states are saturated for
the i-th phase. Observe that upon the arrival of a task ri at time i, an online algorithm can
determine which states will become saturated for the current phase by time i + 1.

The UnifMTS algorithm operates as follows. Consider the task ri arriving at time i

and let φ be the current phase. If the current state does not become saturated for φ at
time i + 1, then UnifMTS stays in the same state. Otherwise, if φ ends by time i + 1, then
UnifMTS moves to a state that minimizes the processing cost in ri. Otherwise, UnifMTS
moves uniformly at random to a state that is unsaturated for φ at time i + 1 (such a state
exists since in this case φ does not end by time i + 1). We note that while phases may end
at non-discrete times, the scheduling decisions made by the algorithm all occur at discrete
times.

Consider an oracle OLT S that advises UnifMTS to move to a state with the longest time
until saturation for the current phase. In the following theorem, we bound the competitive
ratio of UnifMTS with OLT S .

▶ Theorem 4.1. The competitive ratio of UnifMTS with the oracle OLT S against an oblivious
adversary is at most min{2Hn, 2

α + 2}, where 0 ≤ α ≤ 1 is the infusion parameter.

Proof. Observe that an optimal offline algorithm OPT must incur a cost of at least 1 during
each phase. Indeed, if OPT changed states during a phase, then it pays at least 1 in transition
cost. Otherwise, OPT resided in a state that became saturated in this phase, hence it pays
a processing cost of 1.

We now bound the expected cost of UnifMTS with OLT S during a phase φ = [tstart, tend].
Observe that if there exists i ∈ {1, . . . , |σ|} such that i ≤ tstart < tend ≤ i + 1, then by
definition, at time i UnifMTS moved to a state that minimizes the processing cost incurred
during [i, i + 1]. This means that UnifMTS pays 1 in processing cost during [tstart, tend] and
possibly 1 in transition cost at time i. Thus, in this case the expected cost of UnifMTS
during φ is at most 2.

Now we consider the case that there exists i ∈ {1, . . . , |σ|} such that tstart < i < tend.
We show that the cost of UnifMTS during φ is at most 2

α + 2. Let s∗ be the state given in
the advice of OLT S during φ. By definition, by the time s∗ is saturated for φ, all other states
have also been saturated. Therefore, when UnifMTS receives an advice from the oracle,
it transitions into the final state of phase φ. Hence, the additional cost incurred by the
UnifMTS in φ following the advice is at most 2 (1 for the transition to s∗ and at most 1 for
processing cost). Since the algorithm uses randomization only at transition rounds, hence the
expected number of transitions before the algorithm receives the advice is 1/α (recall that at
each transition the advice is given with probability α). For each state that we visit, we pay 1
in transition cost. Since UnifMTS only moves to states that are unsaturated for φ, it pays at
most 1 in processing cost at each state. Overall, the expected total cost is at most 2

α + 2.
We now show that the cost of UnifMTS during φ is at most 2Hn. Notice that for every

transition, UnifMTS pays 1 in transition cost and at most 1 in processing cost. Thus, it suffices
to show that the expected number of transitions during φ is at most Hn. Let f(k) be the
expected number of transitions UnifMTS performs given that there are k unsaturated states



10 Online Algorithms with Randomly Infused Advice

left. Clearly, f(1) = 1. For k < 1, after a single transition we have k − 1 unsaturated states
with probability at most 1/k. Thus, f(k) ≤ f(k − 1) + 1/k, which implies that f(n) ≤ Hn.
Summing over the costs of all phases, we get a competitive ratio of min{2Hn, 2

α + 2}. ◀

5 Set Cover

In the set cover problem, we are given a universe U of n elements and a set F = {S1, . . . , Sm}
of m subsets S1, . . . , Sm ⊆ U such that S1 ∪ · · · ∪ Sm = U . For each element e ∈ U , let
F(e) = {S ∈ F | e ∈ S} be the collection of sets that cover it. In the online setting, a subset
U ′ ⊆ U of elements arrive one by one in an arbitrary order.4 Upon the arrival of an element
e, the algorithm is required to cover it (i.e., if e was not previously covered by the algorithm,
then the algorithm must select a set from F(e)). We emphasize that the algorithm does not
know U ′ (or its size) in advance and that any previously selected set cannot be removed
from the solution obtained by the online algorithm. The cost of a solution to the set cover
problem is the number of sets selected.

In the standard linear program (LP) relaxation for set cover, each set S ∈ F is associated
with a variable xS . The objective is to minimize the sum

∑
S∈F xS subject to the constraints∑

S∈F(e) xS ≥ 1 for each element e ∈ U ′, and xS ≥ 0 for all S ∈ F .
Recall that in the context of set cover in the RIA model, we focus on lazy algorithms, i.e.,

algorithms that adhere to the following restrictions upon the arrival of an elemnt e: (1) if e

is already covered by the algorithm, then in the current round the algorithm does not select
any additional sets to its solution; and (2) if e is not covered yet, then in the current round
the algorithm may only select sets from F(e). Notice that this restriction prevents the trivial
oracle strategy of simply advising to select all the sets of an optimal set cover at each round.

We describe an online algorithm with RIA for set cover in three stages. First, we present
an algorithm that obtains a fractional solution x to the relaxed LP. Then, we present an
online randomized rounding scheme that can be incorporated into the fractional set cover
algorithm to obtain an integral solution which is feasible with high probability. Finally, we
present the oracle’s advice.

Fractional set cover algorithm. We use the basic discrete algorithm presented by
Buchbinder and Naor in [24, Chapter 4.2, Algorithm 1].5 The algorithm operates as follows.
Initially, set xS = 0 for all S ∈ F . Upon arrival of an element e, if

∑
S∈F(e) xS < 1, then

update xS ← 2 · xS + 1/|F(e)| for all S ∈ F(e). Observe that at the end of the round, it
is guaranteed that the fractional primal solution maintained by the algorithm satisfies the
constraint since the algorithm adds at least 1/|F(e)| to the variable xS for each set S ∈ F(e).

Let d = maxe∈U ′ |F(e)| be the maximum degree of an element. The following assertion
on the competitive ratio is established by Buchbinder and Naor in [24].

▶ Lemma 5.1 ([24]). The fractional set cover algorithm is O(log d)-competitive.

Randomized rounding. An online rounding scheme that randomly obtains an integral
solution from the fractional set cover algorithm was constructed by Alon et al. in [8]. The
solution produced by the rounding scheme of [8] is feasible with high probability while

4 While our results in the current section are expressed in terms of the size of the universe n, it can be
modified to obtain the same asymptotic bounds in terms of the length of the element sequence |U ′|.

5 We note that the algorithm presented in [24] is designed for weighted set cover. The algorithm presented
in this paper is its application for the case of unit weights.



Y. Emek, Y. Gil, M. Pacut and S. Schmid 11

incurring a multiplicative factor of O(log n) to the expected cost. However, this rounding
method does not fit our advice framework. This is because all random coins are tossed in the
beginning to compute a threshold for each set. Thus, we present a slightly different rounding
method that fits our framework while maintaining similar guarantees.

The rounding procedure operates as follows. Consider an element e and let x and xint be
the solution maintained by the fractional algorithm and the (integral) solution maintained
by the rounding scheme, respectively, at the time of e’s arrival. If e is already covered
by either the current fractional solution or the current integral solution produced by the
rounding, then we do nothing (we will later show that the feasibility of xint is maintained
with high probability in this case). Otherwise (e is not covered by both solutions), we update
x according to the fractional algorithm. For each S ∈ F(e), let xbeg

S be the value of the
variable xS at the beginning of the round and let δ(S) = xbeg

S + 1/|F(e)| be the additive
increase to xS that occurs during the round. The rounding is obtained by independently
selecting each set S ∈ F(e) to the cover with probability min{1, δ(S) ·Θ(log n)}.

We refer to the randomized algorithm described above (i.e., the fractional set cover
algorithm combined with the rounding scheme) as RandSC. The properties of RandSC are
described in the following lemma.

▶ Lemma 5.2. RandSC is O(log n log d)-competitive and computes a feasible solution with
high probability.6

Proof. Let x be the solution obtained by the fractional algorithm at termination. Recall
that in each round, set S is selected with probability at most δ(S) · c log n (for a constant
c > 0). By linearity of expectation, the total expected cost associated with S is O(log n) · xS .
Thus, the expected cost of RandSC is O(log n) ·

∑
S∈F xS = O(log n log d) · OPT.

We now bound the probability that there exists an element that was not covered by the
integral solution produced by RandSC when it arrived. Consider an element e′ arriving at
round r. Notice that by construction, e′ must be covered by the fractional solution at the
end of round r. We argue that this implies that e′ is covered by the integral solution with
high probability. Let ℓ = |F(e′)| and let S1, . . . Sℓ denote the sets in F(e′). Let us denote
by δi,j the increase to the variable xSi associated with set Si in round j and let pi,j the
probability that Si was selected to the integral solution at round j. If pi,j = 1 for some i ≤ ℓ

and j ≤ r, then e′ is covered by the end of round r with probability 1. Otherwise, due to
the independence of selection events, the probability that e′ is not covered by the integral
solution at the end of round r is

ℓ∏
i=1

r∏
j=1

(1− pi,j) ≤ e
−

∑ℓ

i=1

∑r

j=1
pi,j = e

−c log n
∑ℓ

i=1

∑r

j=1
δi,j ≤ n−c,

where the final inequality holds because the fractional algorithm guarantees that e′ is covered
at round r and thus

∑ℓ
i=1

∑r
j=1 δi,j ≥ 1. By a union bound argument, the probability that

there exists a set that is not covered by the integral solution is at most n1−c. Thus, RandSC
produces a feasible solution with probability at least 1− 1/nc−1. ◀

Oracle’s advice. The idea of the oracle’s advice is to boost the probability of selecting
"good" sets while not losing the probabilistic feasibility guarantee of Lemma 5.2. For the sake

6 For simplicity, RandSC is described as a Monte Carlo algorithm. It can be easily transformed into a Las
Vegas algorithm as follows: whenever an element e is not covered by RandSC upon the end of a round,
select an arbitrary set that covers e into the solution. Notice that the added expected cost is negligible.
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of analysis, let us assume that the oracle is randomized (observe that this assumption does
not enhance the oracle’s power since the oracle can deterministically compute an optimal
realization of the randomized selection). Let A∗ ⊆ F be an optimal solution for the set
cover instance. Consider the arrival of an element e that was not covered yet by both the
fractional and integral solutions and let pS be the probability that set S is selected in the
current round of RandSC for each set S ∈ F(e). The oracle’s advice is as follows: (1) each
set S ∈ F(e) ∩A∗ is selected to the advice; and (2) each set S ∈ F(e)−A∗ is independently
selected to the advice with probability pS . Notice that the argument used in Lemma 5.2
regarding the feasibility of the solution still holds since the oracle does not decrease the
selection probability of any set at a given round. Denoting this oracle by Oboost, we can
establish the following theorem.

▶ Theorem 5.3. The competitive ratio of RandSC with the oracle Oboost against an oblivious
adversary is O(log n) ·min{1/α, log d}, where 0 ≤ α ≤ 1 is the infusion parameter.

Proof. We start by showing that RandSC with Oboost is O(log n log d)-competitive. Notice
that by Lemma 5.2, the total expected cost associated with sets S ∈ F −A∗ is O(log n log d) ·
OPT. In addition, the total cost of sets in A∗ is bounded by |A∗| = OPT. Therefore, the
expected cost of the solution produced by RandSC with Oboost is O(log n log d) · OPT.

We now show that RandSC with Oboost is O( log n
α )-competitive. Consider the run of

RandSC with Oboost on some element sequence. We refer to a round as a selection round if
there exists a set that is selected with a positive probability in that round. Notice that we
can bound the cost of RandSC with Oboost only in selection rounds (for non-selection rounds
no cost is incurred). Observe that in each selection round, the probability of selecting a set
from A∗ is at least α (the probability of receiving advice). Moreover, if at some point in the
execution all sets from A∗ were selected, then there are no selection rounds after that point
(since A∗ covers all elements). Hence, the expected number of selection rounds during the
execution is at most |A∗|/α.

To complete our analysis, we argue that the expected cost associated with sets that are not
in A∗ at each selection round is O(log n). Consider a selection round in which an elements e

arrived. Recall that for each set S ∈ F(e)−A∗, we define δ(S) = xbeg
S + 1/|F(e)|, where xbeg

S

is the value of variable xS at the beginning of the round, and select each set S ∈ F(e)−A∗ to
the cover with probability min{1, δ(S) ·Θ(log n)}. Thus, the total expected cost that comes
from the sets S ∈ F(e)−A∗ in the round is bounded by O(log n) ·

∑
S∈F(e)−A∗ xbeg

S + 1
|F (e)| ≤

O(log n)·2 = O(log n). Since the total cost associated with sets fromA∗ is at most |A∗|, we get
that the total expected cost of RandSC with Oboost is O(log n) · |A∗|/α = O( log n

α ) ·OPT. ◀

6 Lower Bounds

In this section we show fundamental limitations of online algorithms with RIA. First, we give
a lower bound for competitiveness with RIA for online set cover, under the assumption that
the algorithm is lazy (buys sets only when they are needed to cover the current element).
Second, we give a lower bound for competitiveness with RIA for paging, that we improve to
an asymptotically tight lower bound for the case of lazy algorithms. The lower bound for
paging implies the lower bound for the uniform metrical task system.

6.1 Online Set Cover

We give a lower bound for the competitive ratio of any online randomized algorithm with
RIA for online set cover. The construction of the input sequence is similar to the lower
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bounds given in [40, Theorem 2.2.1] and [24, Lemma 4.6]. The bound is given for randomness-
oblivious (defined in Section 2.3) and lazy algorithms (lazy algorithms are allowed to buy a
set only if it contains the current element).

▶ Theorem 6.1. Assume that an online randomized algorithm with RIA for online set-cover
is lazy, randomness-oblivious and strictly c-competitive against the oblivious adversary. Then
c ≥ min{ 1

2 log n, 1
2α}, where n is the size of the universe of element, and α is the infusion

parameter.

Proof. Fix any lazy, randomness-oblivious online randomized algorithm ALG with RIA, its
oracle O and the infusion parameter α. The adversary is oblivious to random choices of the
algorithm, but it has access to the description of the algorithm, the oracle and the infusion
parameter, hence can maintain the probability distribution of ALG’s cache configurations.

Consider a complete binary tree with d leaves. The items to be covered are the nodes of
the tree, and the sets are the d root-leaf paths. Our sequence σ will be the items on one
root-leaf path, starting from the root and going downward.

We chose the sequence of items to request corresponding to a path in the complete binary
tree as follows. Let F (e) be the family of sets that cover the item e, and let pS be the
probability that ALG currently has the set S in the solution. The first request is to the root
of the tree. For the i-th request, we choose one of the children, x or y of the item requested
in the (i − 1)-th request, depending on the probability distribution of the sets that cover
these items. To decide between x and y, we choose the item r ∈ {x, y} with no smaller sum
of the probability mass

∑
F (x) pS .

We consider two cases depending on whether or not the algorithm received advice for σ.

1. Assume the algorithm did not receive advice for σ. In such case, the algorithm acts as an
online algorithm without advice. Notice that the total probability mass of sets that do
not appear in subsequent iterations add up to at least 1/2. Each path has length log n,
and the algorithm pays at least 1

2 for each such round, hence overall the algorithm pays
1
2 log d.

2. Assume the algorithm received advice for σ. In expectation, the number of rounds before
getting advice is 1

α , and the algorithm pays at least 1
2 for each such round, hence in total

the algorithm pays at least 1
2 ·

1
α = 1

2α .

Note that σ can be covered by a single set, namely the one that corresponds to the leaf
where the path ends, hence OPT(σ) = 1. The online algorithm pays at least min{ 1

2 log d, 1
α}

for any sequence σ of the form described above, hence ALG is at least strictly min{ 1
2 log d, 1

2α}-
competitive. ◀

For lazy algorithms, we can obtain a lower bound in terms of the number of d. We say
that an online algorithm for online set cover is lazy if it buys a set only if the current element
is not yet covered, and then it may buy only sets that cover the current element. The next
bound is stronger than the previous one, as it the bound is on the competitive ratio in the
classic sense, with the possible additive constant, as opposed to the previous bound on the
strict competitiveness.

▶ Theorem 6.2. Assume that an online randomized algorithm with RIA for online set-
cover is lazy, randomness-oblivious and c-competitive against the oblivious adversary. Then
c ≥ min{ 1

2 log d, 1
2α}, where d is the maximum element degree, and α is the infusion parameter.
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Proof. We repeat the construction from the previous proof of Theorem 6.1 in phases, in
each phase using a binary tree of 2d items.

As the algorithm is lazy, it cannot buy sets from future phases, and the sets used in
different phases are disjoint, hence advice received in any phase cannot decrease the cost of
the algorithm in any future phase.

Fix any phase. We consider two cases depending on whether or not the algorithm received
advice in this phase. If the algorithm received advice, then it pays at least 1

2 ·
1
α = 1

2α , as
the expected number of rounds in this phase before receiving advice concerning sets in this
phase is 1

α . Otherwise, if the algorithm did not receive advice, then it pays at least 1
2 · log d,

following the arguments from the previous proof.
In total, the algorithm pays at least min{ 1

2 log d, 1
2α} in each phase, and an optimal

algorithm can cover the items in each phase using a single set, hence the algorithm is at least
min{ 1

2 log d, 1
2α}-competitive.

Note that we can repeat this construction arbitrary number of iterations to obtain a lower
bound on the competitive ratio, as opposed to a lower bound on strict competitive ratio.
In each iteration, we use a new set of items and sets corresponding to a binary balanced
tree, and the maximum number of sets that cover any item d does not increase by repeating
the construction. Hence, no randomized algorithm with infused advice can be better than
min{ 1

2 log d, 1
2α}-competitive. ◀

6.2 Paging and Metrical Task Systems

In this section we give a lower bound for competitiveness of randomized online algorithms
with RIA for paging. The uniform metrical task system problem generalizes the paging
problem on instances that include n = k + 1 pages, hence the lower bound for paging is a
common lower bound for paging and uniform metrical task system. We restrict our attention
to randomness-oblivious algorithms, as defined in Section 2.3. Our lower bound for any
randomness-oblivious algorithm is loose by a factor of 1/k; but with the natural assumption
that the algorithm is lazy, we get rid of the 1/k factor, and for lazy algorithms the upper
bounds for paging (Theorem 3.1) and uniform metrical task systems (Theorem 11 in the full
version [31]) are asymptotically optimal.

To show the lower bound in this section, we apply Yao’s Minimax Principle [52] to
competitiveness of randomized online algorithms. In the case of classic online algorithms,
the lower bound for the competitiveness of the best deterministic online algorithm on a
distribution of inputs implies a lower bound on the competitiveness of any randomized online
algorithm on any input sequence.

We define a deterministic equivalent of algorithms with RIA. To this end, we add to each
request the information whether the request is served by a deterministic online algorithm or
by the oracle. We will analyze performance of such an algorithm on a distribution of requests,
where each round is served by the algorithm with probability 1− α, and by the oracle with
probability α. To give a lower bound for randomness-oblivious algorithms (as defined in
Section 2.3), we need to define a deterministic equivalent of such algorithms that we refer to
as deterministic advice-oblivious algorithms: the answer for each request not served by the
oracle is determined by the current request, previous requests and previous answers.

To apply Yao’s priciple to competitiveness of randomized online algorithms with RIA,
we construct a matrix representation of the game, where the row player corresponds to a
deterministic advice-oblivious algorithm combined with the offline oracle algorithm, and the
column player represents the adversary who specifies the input sequence. The value in each
row-column pair of the matrix equals the expected cost incurred by the algorithm-oracle
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pair on the input sequence, divided by the cost of an optimal offline solution for the input
sequence. The choice of whether the online algorithm or the oracle serves a request is
beyond the control of both the adversary and the online algorithm, and to compute the value
for a row-column pair we take the expectation over all possibilities where for each request
independently, the deterministic algorithm serves the request with probability 1−α, and the
oracle serves the request with probability α. Notably, a randomness-oblivious algorithm is
no more powerful than a distribution over the deterministic advice-oblivious algorithms.

▶ Theorem 6.3. Assume that an online randomized algorithm with RIA for online pag-
ing is randomness-oblivious and c-competitive against the oblivious adversary. Then c ≥
min{Hk, 1

k·α}, where α is the infusion parameter.

Proof. To prove the theorem, we apply Yao’s Minimax Principle [52] to competitiveness of
randomized algorithms. Consider any deterministic advice-oblivious algorithm A for paging,
and construct the following distribution over input sequences. Each round is served by A

with probability 1− α, and by the oracle with probability α. The distribution over requests
to pages is constructed as follows. Let S = {p1, p2, p3, . . . , pk+1} be a set of k + 1 pages. We
construct a probability distribution for choosing a request sequence. The first request σ(1) is
chosen uniformly at random from S. Every other request σ(t), t > 1, is made to a page that
is chosen uniformly at random from S \ {σ(t− 1)}. A phase starting with σ(i) ends with
σ(j), where j, j > i is the smallest integer such that {σ(i), σ(i + 1), . . . , σ(j)} contains k + 1
distinct pages.

We claim that for any advice-oblivious algorithm, the advice received in past phases
cannot reduce the cost of the algorithm in future phases. We argue as follows. First, the
advice-oblivious algorithm is forbidden to store past advice in its internal memory for future
use. Second, no algorithm can store meaningful advice for the future in its cache configuration:
each phase contains requests to k + 1 different items, so for any cache configuration at the
start of the phase, there is always at least 1 clean page: a page that is requested in the phase
that the algorithm does not have in the cache at the start of the phase.

In our bounds, we use that the average cost of the algorithm for each request is 1/k; this
follows because the requested page is random and each of its pages is outside the cache with
equal probability.

We lower-bound the cost of the algorithm in each phase in two ways, depending on
whether or not the algorithm receives advice in any round of the phase.
1. Assume that the algorithm does not receive advice in any round of the phase. In such

case, the algorithm acts as an online algorithm without advice throughout the phase, and
the expected cost of the algorithm in the phase is at least Hk, following the standard
arguments [44]: the expected length of the phase is k ·Hk, the average cost of the algorithm
for each request is 1/k, therefore the cost of the algorithm within a phase is at least Hk.

2. Assume that the algorithm receives advice in some round of the phase. To receive advice,
we need in expectation 1/α rounds prior to the advice round. The average cost of the
algorithm for each request is 1/k, hence the expected cost is at least 1

k·α .

An optimal offline algorithm OPT incurs 1 page fault during each phase, the algorithm
pays at least min{Hk, 1

k·α}, hence by summing over all phases of σ, we arrive at the desired
competitive ratio. ◀

Next, we give an improved lower bound for lazy algorithms for paging. Recall that
lazy algorithms for paging are the algorithms that are never allowed to change its cache
configuration unless there is a page miss. This class includes RandomMark as well as most
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other known online paging algorithms. Note that this definition is slightly more general than
the usual definition of lazy algorithms, where the algorithm is only allowed to fetch one page
per request [19]; the intention of this definition is that the lower bound holds for metrical task
systems as well. In the classic setting without infused advice, any algorithm can be turned to
a lazy algorithm without increasing its cost; note, however, that the transformed algorithm
may not be randomness-oblivious. If we restrict our attention to randomness-oblivious
algorithms, the non-lazy algorithms may have an advantage over the lazy algorithms due to
non-lazy algorithm’s potentially frequent interaction with the oracle, which could be used by
the oracle to give advice to prefetch some items even before the first cache miss occurs.

▶ Theorem 6.4. Assume that an online randomized algorithm with RIA for online paging
is lazy, randomness-oblivious and c-competitive against the oblivious adversary. Then c ≥
min{Hk, 1

α}, where α is the infusion parameter.

Proof. To prove the theorem, we apply Yao’s Minimax Principle [52] to competitiveness of
randomized algorithms. Consider any deterministic advice-oblivious online algorithm and
the probability distribution for choosing a request sequence as in the proof of Theorem 6.3.

We claim that for any advice-oblivious algorithm, the advice received in past phases
cannot reduce the cost of the algorithm in future phases. We argue as follows. First, the
advice-oblivious algorithm is forbidden to store past advice in its internal memory for future
use. Second, no algorithm can store meaningful advice for the future in its cache configuration:
each phase contains requests to k + 1 different items, so for any cache configuration at the
start of the phase, there is always at least 1 clean page: a page that is requested in the phase
that the algorithm does not have in the cache at the start of the phase.

We will show that the expected cost of the algorithm is at least min{Hk, 1
α} in any phase.

We lower-bound the cost of the algorithm in each phase in two ways, depending on whether
in this phase the algorithm receives advice in some round with a cache miss or not.

1. Assume that the algorithm does not receive advice in any round with a cache miss. Since
the algorithm is lazy, advice received in rounds without cache misses does not influence
the algorithm’s cache configuration, and since the algorithm is advice-oblivious, it cannot
store such advice either. In such case, the algorithm acts as an online algorithm without
advice throughout the phase, and the expected cost of the algorithm in the phase is at
least Hk, following the standard arguments [44]: the expected length of the phase is
k ·Hk, the average cost of the algorithm for each request is 1/k because the requested
page is random and each of its pages is outside the cache with equal probability, therefore
the cost of the algorithm within a phase is Hk.

2. Assume that the algorithm receives advice in a round with a cache miss. To receive advice
at a round with a cache miss, we need in expectation 1/α rounds with cache misses. Each
round with a cache miss costs 1, hence the expected cost of the algorithm is at least 1/α.

An optimal offline algorithm OPT incurs a single page fault during each phase, and the
algorithm pays at least min{Hk, 1

α}, hence by summing over all phases of σ, we arrive at the
desired competitive ratio. ◀

The bound given in Theorem 6.4 is asymptotically tight for lazy algorithms. However,
a gap of a constant factor of 2 remains. To address this gap, an optimal randomized algorithm
for paging [43] may be a possible direction for future studies.
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7 Conclusions

We introduced a novel method for the rigorous quantitative evaluation of online algorithms
that relaxes the worst-case perspective of classic competitive analysis. The infused advice
model allows the seamless integration of machine-learned predictors with existing randomized
online algorithms.

We leave several avenues for future research, in particular to explore the utility of our
method applied to other randomized online algorithms. Randomness-oblivious online algo-
rithms are known for many online problems, e.g., all randomized memoryless algorithms [26]
such as the COINFLIP algorithm for file migration [51] or the HARMONIC algorithm for
k-server [14, 45] are randomness-oblivious.
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