
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning

Maciej Pacut1, Mahmoud Parham2* and Stefan Schmid1,2,3

1 TU Berlin, Germany.
2 University of Vienna, Austria.

3 Fraunhofer SIT, Germany.

*Corresponding author(s). E-mail(s):
mahmoud.parham@univie.ac.at;

Contributing authors: maciej.pacut@inet.tu-berlin.de;
stefan schmid@univie.ac.at;

Abstract

Distributed applications generate a significant amount of network traffic
in datacenters. By collocating nodes (e.g., virtual machines) that com-
municate frequently so that they reside on the same clusters (e.g., server
or rack), we can reduce the network load and improve application per-
formance. However, the communication pattern of different applications
is often unknown a priori and may change over time; hence it needs to
be learned online. This paper revisits the online balanced partitioning
problem, introduced by Avin et al. at DISC 2016, that asks for an algo-
rithm that strikes a trade-off between the benefits of collocation (i.e.,
reduced network traffic) and its costs (i.e., migrations). Our first contri-
bution is a significantly improved deterministic lower bound of Ω(k · `)
on the competitive ratio, where ` is the number of clusters and k is the
cluster size. The bound holds even for scenarios where the communi-
cation pattern can be perfectly partitioned so that all communications
are internal to the clusters. We match this result with an asymptotically
tight upper bound of O(k · `) for this scenario. For k = 3, we con-
tribute an asymptotically tight upper bound of Θ(`) for the case where
the communication pattern can change arbitrarily over time. We improve
the result for k = 2 by providing a strictly 6-competitive upper bound.

Keywords: Distributed applications, cloud computing, online algorithms,
competitive analysis

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

Springer Nature 2021 LATEX template

2 Optimal Online Balanced Graph Partitioning

1 Introduction

Data-centric applications, from distributed machine learning to distributed
databases, generate a significant amount of network traffic in datacenters [1,
2]. The performance of these distributed applications often depends on the
performance of the underlying communication networks [3, 4].

The virtualization of resources in datacenters introduces an intriguing
opportunity to reduce the network traffic and improve performance. In par-
ticular, it becomes possible to adaptively migrate frequently communicating
virtual machines (or containers) closer to each other, in a demand-aware man-
ner. Such adaptive migrations, however, come at a cost (e.g., resource and time
overhead) and introduce a tradeoff.

This paper studies the algorithmic problem underlying such demand-aware
optimizations, aiming to strike a balance between the benefits of migrations
(e.g., reduced network load) and their costs. This is particularly challenging in
a setting where the traffic can be bursty and change over time, in a hard to pre-
dict manner, as it is often the case in practice [5]. We are in the realm of online
algorithms and competitive analysis, and ideally, the algorithm should perform
closely to an optimal offline algorithm without requiring any information about
future traffic demands.

1.1 Online Algorithms and Competitive Analysis

We measure the quality of the proposed solutions with competitive analysis [6],
which suits well the networking problems that are online by their nature. The
sequence of requests σ is revealed one-by-one, in an online fashion. Upon seeing
a request, the algorithm must serve it without the knowledge of future requests.

We measure the performance of an online algorithm by comparing to the
performance of an optimal offline algorithm. For a given sequence of requests
σ, let ALG(σ) be the cost incurred by a deterministic online algorithm ALG,
and let OPT(σ) be the cost incurred by an optimal offline algorithm OPT.
In contrast to ALG that learns the requests one-by-one as it serves them,
OPT has complete knowledge of the entire request sequence σ ahead of time.
The goal is to design online algorithms that provide worst-case guarantees. In
particular, ALG is said to be α-competitive if there is a constant β, such that
for any input sequence σ it holds that

ALG(σ) ≤ α ·OPT(σ) + β.

Note that β cannot depend on input σ but can depend on other parameters
of the problem, such as the number of nodes. The minimum α for which ALG
is α-competitive is called the competitive ratio of ALG. We say that ALG is
strictly α-competitive if additionally β = 0.

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 3

1.2 Model

The problem known as online balanced graph repartitioning was introduced by
Avin et al. [7] at DISC 2016. A special variant of the general problem, called
the learning model, was later introduced by Henzinger et al. [8]. We define our
terminology and the problems considered in this paper as follows.

Preliminaries

We say that an assignment of nodes to clusters is a partitioning of nodes,
and it represents the configuration of the algorithm. The reconfiguration or
migration of nodes is a repartitioning operation. We say that a subset of nodes
are collocated if they reside in the same cluster. A communication request
between two nodes is internal if the nodes are collocated in the same cluster.
Otherwise, they are in different clusters, and the request is external. Algorithms
serve internal requests locally at cost 0 and external requests remotely at cost 1.

We refer to the graph structure of a request sequence as its communica-
tion graph, which contains an edge between pairs of nodes with at least one
request in the sequence. A set of nodes belong to a communicating (connected)
component if a path exists between them in the communication graph. A com-
ponent is a singleton if it contains exactly one node, and we refer to it as an
isolated node. The origin of a node is the cluster in which the node resides
in the initial partitioning. For any subset of nodes C collocated in the initial
partitioning, we let I(C) denote their cluster of origin.

The General Partitioning Problem

We are given a set of n nodes, initially arbitrarily partitioned into ` ∈ N+ clus-
ters each of capacity k = n/` nodes. The nodes interact in an online manner: we
are given a sequence of pairwise communication requests σ = (u1, v1), (u2, v2),
(u3, v3), . . ., where a pair (ut, vt) indicates that nodes ut and vt exchange a fixed
amount of data at time t. We sometimes refer to the nodes as virtual machines
or processes, and we refer to the clusters as servers.

The cost of serving a request (u, v) depends on the relative positions of u
and v: if they reside in the same cluster, the request costs 0, and it costs 1 oth-
erwise. Before serving a request, an online algorithm may perform a repartition
of nodes. That is, it may migrate any number of nodes to different clusters
while ensuring the number of nodes in each cluster does not exceed k by more
than εk for constant ε ≥ 0. We refer to the extra capacity as resource augmen-
tation. We consider the problem without any augmentation for most of this
paper, i.e., ε = 0. The cost of migrating a single node is α ∈ N+. The goal is
to minimize the total cost of repartitions and to serve the requests. We use
the terms “partition”, “partitioning”, and “configuration” interchangeably.

The Learning Variant

Consider a variant of the general partitioning problem, where each pair of
nodes either never communicates, or they communicate indefinitely. Once

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Springer Nature 2021 LATEX template

4 Optimal Online Balanced Graph Partitioning

a communication request (u, v) arrives, any algorithm must keep u and v
collocated for the rest of the input sequence. We assume that requests of σ
constitute a communication graph that admits a perfect partitioning : a par-
titioning that assigns exactly k nodes to each cluster, and no inter-cluster
request ever occurs in this partitioning. Moreover, an optimal offline algorithm
moves to this partitioning before serving the sequence, and it stays there per-
manently. The goal of the algorithm is to learn the communication graph (as it
is revealed one edge at a time) while serving requests without performing too
many node migrations. In the learning model, any two communicating nodes
must be collocated, and only the migration cost is relevant; for simplicity, we
may scale it down to α = 1 (our bounds hold for any α > 1 as well).

1.3 Related Work

Closest to our work are those of Avin et al. [7] at DISC 2016 (on the gen-
eral partitioning model) and Henzinger et al. (on the learning model) [8] at
SIGMETRICS 2019 and SODA 2021 [9]. Recently, a polynomial-time online
algorithm achieving the same competitive ratio as in [7] has been proposed
by Forner et al. [10]. However, the focus of these papers is primarily on mod-
els with resource augmentation: the online algorithm can use slightly larger
clusters than the offline algorithm. Avin et al. showed that their lower bound
Ω(k) holds even in a scenario with significant capacity augmentation, and they
provided an algorithm with the competitive ratio O(k log k) using the (2 + ε)-
augmented cluster capacity. Their ratio is independent of `, which is impossible
without significant resource augmentation.

In contrast, we study the non-augmented setting, where the nodes need to
be perfectly balanced among the clusters. This assumption is more realistic,
as it utilizes all the processing capacity of a datacenter instead of leaving some
CPUs idle. This variant is significantly more challenging, as it is related to
hard problems such as integer partitioning [11]. Not much is known about
the setting without augmentation. For k = 2, Avin et al. [7] presented a 7-
competitive algorithm with a substantial (Ω(`2)) additive constant. For k > 3,
a O(k2·`2)-competitive (phase-based) algorithm was given by [7]. Later, a more
sophisticated analysis by Bienkowski et al. [12] improved the ratio of the same
algorithm to O(2O(k) · `), which is significant for its linear dependency on `.
The best known lower bound for the problem without augmentation is Ω(k) [7].
Given our lower bound of Ω(k · `) in this paper, the quest for closing the gap
remains open. See Table 1 for known results.

The problem has also been studied in a weaker model where the adversary
can only sample requests from a fixed distribution [13] over the edges of a ring
communication graph.

The static offline version of the partitioning problem is known as the `-
balanced graph partitioning problem, where the entire communication graph
is known in advance, and the task is to partition n nodes into ` clusters
of capacity n/` each, minimizing the number of inter-cluster edges, The prob-
lem is NP-complete, and cannot even be approximated within any finite factor

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 5

Variant Lower bound Upper bound

Learning, k ≥ 3 Ω(k`), ε = 0 (Thm. 1) O(k`), ε = 0 (Thm. 3)

Learning, k ≥ 3 Ω(` log k), ε≤ 1
32

[9] O(` log k), ε ∈ Ω(1) [9]

Learning, k ≥ 3 Ω(`), ε < 1/3 (Thm. 2) O(log k), ε > 1 [9]

General, k = 3 Ω(`), ε = 0 (Thm. 4) O(`), ε = 0 (Thm. 6)

General, k = 2 3, ε = 0 [7] 6, ε = 0 (Thm. 7)

General, k > 3 Ω(k`), ε = 0 (Thm. 4) O(2O(k)`), ε = 0 [12]

Table 1: Overview of our contributions and known results on the deterministic
online partitioning problem.

unless P=NP [14]. The static variant where ` = 2 corresponds to the mini-
mum bisection problem, which is already NP-hard [15], and currently the best
approximation ratio is O(log n) [16–21].

The studied problem is further related to some classic online problems.
In particular, it is related to online paging [22–25], sometimes also referred to
as online caching, where requests for data items (nodes) arrive over time and
need to be served from a cache of finite capacity, and where the number of
cache misses must be minimized. Classic problem variants usually boil down
to finding a smart eviction strategy, such as Least Recently Used (LRU) [22].
In our setting, requests can be served remotely (i.e., without fetching the cor-
responding nodes to a single physical machine). In this light, our model is
more reminiscent of caching models with bypassing [26–28]. A major differ-
ence between these problems is that in the caching problems, each request
involves a single element of the universe, while in our model, both endpoints
of a communication request are subject to optimization. In this light, we can
see our model as a “symmetric” version of online paging. The general problem
additionally generalizes symmetric ski rental [29].

Graph partitioning and clustering problems are fundamental in computer
science and arise in multiple contexts, see [30, 31].

1.4 Contributions

This paper presents several new results for the online graph partitioning prob-
lem. Table 1 provides an overview of our contributions compared to prior
work.

For both the learning model and the general model, we obtain a lower
bound of Ω(k · `) on the competitive ratio of any online deterministic online
algorithm (that also holds in the general partitioning model). This improves
over the best known lower bound Ω(k) [7] that holds only in the general par-
titioning model. The generalized lower bound Ω(k · `) for the learning model
holds in the general model as well. We further adjust the lower bounds to show
that the factor of Ω(`) is unavoidable even with a significant augmentation.

We complement these result with an asymptotically optimal, O(k · `)-
competitive algorithm for the learning model. For the general partitioning

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Springer Nature 2021 LATEX template

6 Optimal Online Balanced Graph Partitioning

model and k = 3, we design an asymptotically optimal O(`)-competitive
algorithm (after the conference version of this paper, the upper bound was
generalized to arbitrary ` by Bienkowski et. al. [12], yielding an O(2O(k) · `)-
competitive algorithm). We further present a strictly 6-competitive algorithm
for k = 2 that improves upon the previous 7-competitive algorithm with
O(α`2) additive constant. All algorithms in this paper have a strict competitive
ratio (cf. Section 1.1), which improves over previous results with substantial
additive in terms of (α · k · `)2.

2 The Learning Model

We begin with the learning variant of online balanced graph partitioning
problem. First, we show a surprisingly high lower bound of Ω(k · `) against
deterministic algorithms for k ≥ 3. The lower bound holds also in the general
partitioning model (see Theorem 4 for details). Second, we provide a determin-
istic algorithm that asymptotically matches this lower bound for the learning
model.

2.1 Lower Bound

Overview of the construction. At each time step, we issue a new request,
depending on the configuration of the online algorithm. First, we issue requests
between k − 1 nodes of some arbitrarily chosen cluster, and we refer to this
communicating component as B. In any partitioning, the communicating com-
ponent B is collocated with exactly one isolated node, called the pivot. Second,
we issue a request between the pivot and an arbitrarily chosen node from
a different cluster. Any algorithm must collocate these nodes (recall that we
consider a learning variant), and it must place them in a different cluster than
B’s (otherwise, its capacity would be violated). Note that after collocating
them, another isolated node must the take place of the pivot. Third, we issue
the request between the new pivot and an arbitrarily chosen node from the
same cluster of origin as the pivot. We repeat the last step of the construction
Θ(k ·`) times (exact condition to be determined), using the node isolated node
collocated with B as a new pivot. The algorithm pays 1 per each such request.

We claim that this sequence is cheap to serve offline. Roughly, if an offline
algorithm would reside in the initial configuration, only the requests between
x0 and y0 would be external, and all the subsequent requests would be free.
Consider an offline strategy that collocates x0, y0 by swapping them with some
initially collocated nodes x∗, y∗ that did not participate in any request. To
make sure that such a pair always exists, we stop repeating the requests con-
cerning the pivot while there are still two isolated nodes collocated on some
server. We illustrate the construction in Figure 1.

Theorem 1 Any deterministic online algorithm for the learning model of online
balanced graph partitioning and k ≥ 3 has the competitive ratio of at least (k−2)(`−
1)/2− 2.

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 7

(a) Initial Configuration

B

.

.

.

x0

. . .
.
.
.

y0
r0

. . .

.

.

.

x∗

y∗

(b) OPT’s Configuration

B

.

.

.

x∗

. . .
.
.
.

y∗

. . .

.

.

.

x0

y0

(c) ALG’s ith Configuration

B

.

.

.

xi

. . .

.

.

.

Ci
ri

. . .

.

.

.

x∗

y∗

Fig. 1: Large rectangles represent clusters. Nodes are shown in gray circles,
and gray rectangles represent components. Both ALG and OPT start in the
configuration (a). OPT performs only two swaps and ends up at the configu-
ration (b). At the beginning of the ith iteration, ALG is in the configuration
(c) before evicting the ith pivot node xi from the cluster of component B.

Proof Fix any online algorithm ALG. Initially, all nodes are isolated, i.e., each node
is in a singleton communicating component. We issue requests one-by-one, in reaction
to ALG’s choices.

1. Component B. We issue requests among k − 1 nodes in an arbitrary
cluster, and we refer to these nodes as a communicating component B. In
any feasible partition, a single isolated node must be collocated with B
(each cluster hosts exactly k nodes). We refer to the isolated node collocated
with B at any time as the pivot node. Let x0 denote the first pivot node.

2. Request between nodes originating from different clusters. We
issue a request between x0 and an arbitrarily chosen isolated node y0. This
leads to the eviction of x0 (otherwise, the algorithm incurs an arbitrar-
ily large cost, while the optimal strategy is to collocate all communicating
pairs). Hence, ALG must collocate this pair in a different cluster (cannot
collocate it with B). In order to maintain a feasible partitioning of nodes
after collocating {x0, y0}, ALG must replace x0 with another isolated node,
the new pivot node.

3. Requests between nodes originating from the same clusters. We
continue to issue requests between the current pivot node and any node
with the same origin as the pivot. Consider the i-th such request, and the
isolated node xi, collocated with B. Precisely, we issue a request between
xi and some node in Ci, where Ci is the largest communicating component
s.t. I(Ci) = I(xi), Ci 6= {x0, y0}. Then, ALG must collocate the communi-
cating component {xi}∪Ci in one cluster, and again, the algorithm replaces
xi with some isolated node xi+1. We terminate the process once the num-
ber of remaining isolated nodes is smaller than ` + 3. At each step i, the
number of isolated nodes decreases either by one, or it decreases by two
if Ci is a singleton. Therefore, once the process terminates, at least ` + 1
nodes remain isolated.

To assure the correctness of this input sequence, we claim that the communicating
components admit a feasible partition. Once we terminate, there are at least ` + 1
isolated nodes left (the number of isolated nodes decreases at most by 2 at each

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

Springer Nature 2021 LATEX template

8 Optimal Online Balanced Graph Partitioning

step). Therefore, two isolated nodes x∗ and y∗ exist with the same cluster of origin,
I({x∗}) = I({y∗}). Consider a partition P ∗, obtained from the initial partition after
swapping x0 and y0 with x∗ and y∗, respectively. In P ∗, the pair {x0, y0} resides
in the cluster I({x∗, y∗}). After the first request {x0, y0}, the requests are issued
only between nodes originating from the same cluster, and all of these are collocated
in P ∗. This implies that no request is external in P ∗, and we conclude that it is
a feasible partition.

We bound the cost of ALG on the produced request sequence. At each request
issued at step (3) of our construction, some communicating component grows, and
ALG performs at least one swap. Let S be the set of all communicating components
created by issuing requests at step (3) of the construction. Each component S ∈ S
grew exactly |S|−1 times, each time joining an isolated node, and hence the number
of nodes ALG swaps is at least

ALG ≥
∑
S∈S

(|S| − 1) = |
⋃
S| − |S|.

In total,
⋃
S contains all the k · ` nodes excluding k − 1 nodes of B, the 2 nodes

in {x0, y0} and at most `+ 2 singletons, which amounts to at least k · `− k − `− 3
nodes. The set S consists of at most ` − 1 components, one per possible cluster of
origin excluding B’s cluster of origin. Hence, the total number of swaps performed
by ALG is

ALG ≥ |
⋃
S| − |S| = k · `− k − 2`− 2 = (k − 2)(`− 1)− 4.

Finally, we bound offline algorithm’s cost for the constructed sequence of requests.
Consider an offline algorithm OPT that moves to P ∗ (described earlier in this proof)
by performing only two node swaps. As argued earlier, no communicating component
is split in P ∗ and OPT pays only for the two swaps. We combine the above arguments
to conclude that the competitive ratio is bounded by ALG/OPT ≥ (k−2)(`−1)/2−2.

�

We note that the lower bound requires k ≥ 3. In contrast, for k = 2 the
learning problem is trivial: immediate collocation of communicating pairs is
1-competitive. In contrast, the general partitioning problem for k = 2 is non-
trivial (see Section 3.4), a lower bound of 3 is known [7], and we provide
a 6-competitive algorithm, see Section 3.4.

Later in Section 3.1, we elaborate on how to transform this construction
to a lower bound for the general partitioning problem.

2.2 Lower Bound under Resource Augmentation

The majority of work on the online balanced partitioning problem so far [7–9]
focuses on the scenario with resource augmentation, where the cluster capacity
of an online algorithm is larger than that of the optimal offline algorithm to
which we compare the performance. We say that an online algorithm uses
augmentation ε > 1 if each of its clusters has the capacity of ε · k nodes. The
number of all nodes remains k · `.

By using a variant of the lower bound construction from Theorem 1,
we show a lower bound of Ω(`) that holds even with significant resource
augmentation.

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 9

Theorem 2 With resource augmentation strictly smaller than k/3 (i.e., ε < 1/3),
the competitive ratio of any deterministic online algorithm for the learning model of
online balanced graph partitioning is in Ω(`).

Proof Fix k divisible by 3, and construct 3 communication components of size k/3 in
each cluster. Consider any deterministic online algorithm with resource augmentation
ε < 4/3. Note that no more than 3 such communication components fit in one cluster.
Then, apply the construction from the lower bound for k = 3 (Theorem 1), treating
these communication components as individual nodes. The cost of any algorithm
(including the optimal offline algorithm) scales up by k/3 due to the increased cost
of moving entire components instead of individual nodes, and we conclude that the
lower bound Ω(`) holds. �

2.3 Upper Bound

We present an asymptotically optimal algorithm PPL (Perfect Partition
Learner) for the learning model. The algorithm is a modification of the
algorithm DET from [7]. The difference is in the choice of partition after a com-
ponent merge. In DET, the choice of the partition was arbitrary, whereas our
algorithm chooses an arbitrary partition closest to the initial partition that
keeps all communicating nodes collocated. The algorithm PPL is listed in
Algorithm 1.

To maintain the feasibility of the solution, the algorithm maintains compo-
nents of communicating nodes. Initially, all nodes are in their own component,
and upon a request between two nodes from different components, we merge
the components. We maintain an invariant that the nodes of each communicat-
ing component are collocated. We say that a partition that collocates all nodes
of all communicating components is a communicating component respecting
partition.

Perfect Partition Learner

On each inter-cluster request {u, v}, PPL creates new components by merging
the two components that contain nodes u and v. In order to collocate nodes
of the new component, PPL moves to a communication component-respecting
partition that minimizes the distance to the initial partition PI . We measure
the distance between two configurations in the number of swaps to transform
one configuration to the other. The distance to the initial partition is equivalent
to the number of nodes that migrated from their cluster origin. Algorithm 1
describes the scheme of the algorithm.

Analysis

Fix a request sequence σ, the initial partition PI := {I1, . . . , I`} and an optimal
offline strategy OPT with the final partition POPT. For each partition P =
{C1, . . . , C`} we define its distance from the initial partition as the number
of nodes in P that do not reside in their initial cluster. Observe that at least

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Springer Nature 2021 LATEX template

10 Optimal Online Balanced Graph Partitioning

Algorithm 1 Perfect Partition Learner (PPL)

For each node v create a singleton component Cv = {v} and add it to C.
for each request σt = {u, v}, 1 ≤ t ≤ N do

Let C1 3 u and C2 3 v be the components containing u and v,
respectively.

if C1 6= C2 then
Merge C1 and C2 into one component C ′

and set C = (C \ {C1, C2}) ∪ {C ′}.
if C1 and C2 are not collocated then

Move to a component respecting partitioning, closest to PI .
end if

end if
end for

∆(P) node migrations are required in order to reach the partition P from PI ,
and thus OPT(σ) ≥ ∆(POPT).

PPL replaces the current partition P with a perfect partition closest to PI ,
thus it never moves to a partition that is more than ∆∗ := ∆(POPT) migrations
away from PI . Consequently, PPL never moves to a partition beyond the
distance ∆∗. We use this property to bound the cost of each repartitioning of
PPL.

Property 1 Let P be any partitioning chosen by PPL at any time. Then, its
distance from the initial partitioning is ∆(P) ≤ ∆∗.

Lemma 1 The cost of each repartitioning by PPL is at most 2 · OPT(σ), where
OPT(σ) is the cost of an optimal offline algorithm for the request sequence σ.

Proof Let Pi denote the partition of PPL immediately after serving σi, the request
that arrives at time t. Consider the repartitioning that transforms Pt−1 to Pt upon
the request σt. Let M ⊆ V denote the set of nodes that migrate at t. Let M−

and M+ denote the subset of nodes that, respectively, enter or leave their initial
cluster during the repartitioning. In total, M+ and M− account for all migrations,
M = M+ ∪M−.

Since at least |M−| nodes are not in their initial cluster before the repartitioning
(i.e., in Pt−1), the distance from PI before the repartitioning is ∆(Pt−1) ≥ |M−|.
Analogously, the distance after the repartitioning is ∆(Pt) ≥ |M+|. Thus, |M | ≤
∆(Pt−1) + ∆(Pt). By Property 1, ∆(Pt−1) ≤ ∆∗ and ∆(Pt) ≤ ∆∗. Since ∆∗ ≤
OPT(σ), we conclude that the total cost of the algorithm is |M | ≤ 2 ·OPT(σ). �

Theorem 3 PPL is (2(k − 1) · `)-competitive.

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 11

Proof Let PF := {F1, . . . , F`} be the partition of PPL after serving the sequence σ.
At each request, the algorithm enumerates all communicating component-respecting
`-way partitions of components that are in the same (closest) distance to PI . That is,
once it reaches a partition P at distance ∆∗ = ∆(P), it does not move to a partition
P ′ where ∆(P ′) > ∆∗ before it enumerates all partitions at distance ∆∗. Hence, PF
is at distance at most ∆∗ = OPT(σ) from the initial partition.

We claim that PPL performs at most (k−1) ·` repartitions while serving σ. Each
component begins as a singleton, and with each request, the size of some component
increases by one. Consequently, the number of repartitions of PPL is bounded by
the number of times the components grow. Consider any cluster Fi ∈ PF . Each
cluster has the capacity k, thus the total number of times a component in Fi grows
is at most

∑
C∈Fi

(|C| − 1) ≤ k − 1. Summing this bound over all ` clusters gives
us at most (k − 1) · ` repartitions. By Lemma 1, each repartitioning costs at most
2 · OPT(σ). The total cost of PPL is thus at most 2 · (k − 1) · ` · OPT(σ), which
implies the claim. �

By Theorem 1, the lower bound for the competitive ratio of any deter-
ministic algorithm is Ω(k · `), and we conclude that PPL is asymptotically
optimal.

Note on running time. Since the component sizes are in O(n), computing
a component-respecting partition for ` = 2 is feasible in polynomial time using
dynamic programming [13], but is strongly NP-hard for ` > 2 [32]. However, we
assume unlimited computational power and focus on competitiveness instead.

3 General Partitioning Model

In this section, we discuss the general online model where the request sequence
can be arbitrary. First, in Section 3.1, we show a lower bound of Ω(k · `) by
generalizing the construction for the learning model from Section 2.1. Second,
we generalize the lower bound for resource augmentation from Theorem 2.
Third, in Section 3.3, we show an O(k · `)-competitive algorithm for k = 3.
Finally, in Section 3.4, we show a strictly 6-competitive algorithm for k = 2.

3.1 Lower Bound

We generalize the lower bound construction of for the learning model in two
dimensions. Recall that in the learning model, algorithms by assumption collo-
cate any pair as soon as they communicate. Hence, we cannot apply the lower
bound construction of Theorem 1 directly since algorithms may resist collo-
cating such nodes. For the first dimension of our generalization, we impose
a collocation by defining ground sets of nodes. Nodes that are assigned to
the same ground set communicate as long as they are separated. For the sec-
ond dimension of our generalization, we iterate the construction in batches.
Repeating batches ensures that the input sequence with the claimed ratio can
be arbitrarily long, and the algorithm cannot have a small competitive ratio
with a large additive. After each batch, we ensure that the online algorithm
resides in the same configuration as the optimal offline solution. A single batch

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

Springer Nature 2021 LATEX template

12 Optimal Online Balanced Graph Partitioning

resembles the construction from Theorem 1, but in place of each request, we
reveal a ground set: once the online algorithm splits a revealed set, we issue
as many requests as it takes for it to collocate the split parts.

We start by revealing a ground set B of size k − 1 in an arbitrary cluster.
Then, we reveal a cross-origin ground set with the pivot (the node collocated
with B). Then, we repeatedly reveal ground sets of the current pivot and
a node originating from the same cluster as the pivot. We repeat the last step
of the construction Θ(k · `) times (exact condition to be determined), using
the isolated node collocated with B as a new pivot. The algorithm swaps at
least one node at each such step.

We claim that this sequence is cheap to serve offline. Roughly, if an offline
algorithm would reside in the initial configuration, only the requests between
x0 and y0 would be external, and all the subsequent requests would be free.
Consider an offline strategy that collocates x0, y0 by swapping them with some
initially collocated nodes x∗, y∗ that do not participate in any request. To make
sure that such a pair always exists, we stop repeating the requests concerning
the pivot while there are still two isolated nodes collocated on some server.

Ground sets. We construct our lower bound using ground sets. Instead of
directly constructing the request sequence, we construct ground sets of nodes
that start communicating if split by the online algorithm. This is possible since
the algorithm is deterministic, and the adversary knows its configuration at
any time. If the algorithm insists on keeping a ground set split, we continue to
issue requests between non-collocated nodes of the ground set until the algo-
rithm collocates them. Under such a request sequence, the algorithm must
maintain a perfect partition of ground sets, as otherwise, it is not competi-
tive. The ground sets are initially unknown to the algorithm, and the perfect
partition is hidden from it. In contrast, the optimal offline algorithm knows
the entire sequence in advance and may move to the perfect partition at the
beginning.

Theorem 4 Any deterministic online algorithm for the general model of online
balanced graph partitioning has the competitive ratio at least (k − 2)(`− 1)/2− 2.

Proof Fix any deterministic online algorithm ALG and any optimal offline algorithm
OPT. We construct a sequence for the general model in batches of requests that can
be repeated arbitrarily many times.

We construct the first batch by repeating the construction from Theorem 1,
where in place of a request (u, v), we merge the ground sets of u and v. This ensures
that the algorithm collocates all nodes from each communicating component. If the
algorithm does not collocate the nodes, it is not competitive as it pays an arbitrarily
large cost for split ground sets. By the construction from Theorem 1, there exists
a partitioning that collocates all the ground sets, and therefore any competitive
algorithm eventually moves to such configuration.

After the batch finishes, we force the algorithm to move into the partitioning that
is identical to OPT’s partitioning. Let {C1, C2, . . . , C`} be OPT’s configuration at

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 13

this point. We reveal additional ground sets Ci for i ∈ [1, `] (i.e., containing all nodes
that OPT has collocated). Note that these requests are free for OPT, and therefore
OPT does not change its configuration. The batch ends once the algorithm moves
to OPT’s configuration.

Once the algorithm reaches OPT’s configuration, we issue the next batch by
repeating the construction. We may repeat issuing batches this way an arbitrary
number of times. By applying similar reasoning to the proof of Theorem 1, in each
batch the algorithm performs at least (k · `− k − 2`− 2) swaps, each for cost α. OPT
performs at most two swaps in each batch. The competitive ratio from Theorem 1
holds for each batch separately, and therefore it holds for the entire sequence. �

3.2 Lower Bound for Algorithms with Resource
Augmentation

We generalize the lower bound for the learning model (Theorem 2) to show
that the factor of Ω(`) is unavoidable even with significant augmentation.

Theorem 5 With resource augmentation strictly smaller than k/3 (i.e., ε < 1/3),
the competitive ratio of any deterministic online algorithm for the general model of
online balanced graph partitioning is in Ω(`).

Proof Fix k divisible by 3, and construct 3 ground sets of size k/3 in each cluster.
Consider any deterministic online algorithm with resource augmentation 1 + 1/3 −
ε. Note that no more than 3 such ground sets fit in one cluster. Then, apply the
construction from the lower bound (Theorem 4) for k = 3 using these communication
components treating them as individual nodes. The cost of any algorithm (including
the optimal offline algorithm) scales up by k/3 due to increased cost of moving entire
ground sets instead of individual nodes, and we conclude that the lower bound Ω(`)
holds. �

3.3 Optimal Algorithm for Clusters of Size 3

For the setting with k = 3, Avin et al. [7] obtained a O(`2)-competitive algo-
rithm. Their algorithm keeps track of external communication between nodes,
and upon reaching a threshold α (the cost of migrating a node), we call the edge
between them saturated. The algorithm keeps the invariant that the endpoint
nodes of each saturated edge are collocated, and to this end, the algorithm
tracks connected components consisting of nodes reachable via saturated edges.
To collocate the nodes, the algorithm moves to an arbitrary partition where all
nodes of all connected components are collocated. The algorithm operates in
phases, and if no partition satisfying the invariant exists, it resets the counters
for all pairs of nodes.

The algorithm ALG3 presented in this section is a modified version of this
algorithm. The difference is in the choice of partition after a component merge.
Their algorithm chooses the partitioning arbitrarily, and our algoritm chooses
the partition closest to the current partition (a repartition of minimum cost).

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

Springer Nature 2021 LATEX template

14 Optimal Online Balanced Graph Partitioning

Our modification of the algorithm is straightforward, and our main con-
tribution is an improved analysis of the algorithm. A straightforward analysis
of our algorithm results in the bound O(`2), and we improve the analysis
two aspects. First, we observe that the cost of each of O(`) reconfigurations
per phase is constant. Second, we deal with pairs of nodes that do not reach
the threshold α (unsaturated edges). In the analysis of the algorithm from [7],
these caused an additive O(α·k2 ·`2). In our analysis, we observe that either the
number of unsaturated edges is small, or any algorithm pays for a significant
fraction of them. We bound the cost of the latter by estimating the capabil-
ities of the optimal offline algorithm to prepare for an incoming sequence of
requests.

Saturated components. We say that the pair (u, v) is saturated if the counter’s
value is α, and unsaturated otherwise (saturation of a pair leads to a merge
action). We say that a partition that collocates all nodes of all saturated
components is a saturated component respecting partition.

The algorithm ALG3. For each pair of nodes {x, y}, ALG3 maintains a counter
C{x,y} and increments it on every external request between x and y. Initially,
each node is isolated (belongs to its own component). Once C{x,y} = α, ALG3

merges the components of u and v, and moves to the closest saturated com-
ponent respecting partition. If no such partitioning exists, ALG3 resets all
components to singleton components, resets all counters to 0, and ends the
phase.

Theorem 6 ALG3 is 60`-competitive for k = 3.

Before bounding the competitive ratio of ALG3, we upper-bound the cost
of a single repartition of ALG3. In our analysis, we distinguish between three
types of clusters: C1, C2 and C3. In a cluster of type Ci, the size of the largest
component contained in this cluster is i.

Lemma 2 In a single repartition of ALG3, it swaps at most two pairs of nodes.

Proof If no saturated component respecting partition exists after the merge of
components, then ALG3 resets all components, ends the phase, and performs no
repartition. Thus it suffices to show that the merged component has a size at least 4
to conclude that ALG3 incurs no migration cost.

Consider a request between u and v that triggered the repartition and let U and
V be their respective clusters. The request triggered the repartition, hence it was
external and U 6= V . We consider cases based on the types of clusters U and V .

1. If either U or V is of type C1, then this cluster can fit the merged component,
and the repartition is local within U and V , for the cost of at most 2 swaps.

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 15

2. If either U or V is of type C3, a component of size 3 participates in a merge,
and we have a component of size at least 4, and ALG3 ends the phase with
no repartition.

3. It remains to consider the case where both U and V are of type C2. If
(u, v) both belong to components of size 2, then the merged component
has size 4, and ALG3 incurs no cost. Otherwise, if one of u, v belongs to
a component of size 2, then it suffices to swap components of size 1 between
U and V . Finally, if u and v belong to components of size 1, then we must
place them in a cluster different from U and V . Note that if C1-type cluster
does not exist, then no saturated component respecting partitioning exists.
Otherwise, ALG3 performs two swaps — it swaps the nodes u and v with
any two nodes of any cluster of type C1.

In each case, we showed that a saturated component respecting partition is reachable
in at most two swaps. �

Next, we observe that ALG3 keeps saturated edges internal, and it increases
counters only upon external communication, thus we upper-bound the ALG3’s
counter value for each unsaturated edge in any phase.

Observation 1 The external request counter for each unsaturated edge has a value
at most α− 1.

Now we are ready to bound the competitive ratio of ALG3.

Proof of Theorem 6 Fix a completed phase, and consider the state of ALG3’s counters
at the end of it (before the reset). By σ we denote the input sequence that arrived
during the phase. We consider the incomplete phase later in this proof.

In our analysis, we focus on the requests that were external to ALG3 at the
moment of their arrival; these are the only requests that incur a cost for ALG3.
We denote these external requests by σcost. We partition the sequence σcost into
subsequences σI and σE . The sequence σI (inter-component requests) denotes the
requests from σcost issued to pairs that belong to the same component of ALG3 at the
end of the phase. The sequence σE (extra-component requests) denotes the requests
from σcost that do not appear in σI . Let ALG3(M) denote the cost of migrations
performed by ALG3 in this phase.

First, we bound the cost of ALG3 in the phase. During the phase, ALG3 performs
at most 2` component merge operations — exceeding this number would mean that
a component of size 4 exists, and the phase would have ended already. We bound
the cost of each repartition after a merge by Lemma 2, obtaining ALG3(M) ≤ 8α · `.
We bound ALG3(σI) by summing the intra-component counters of each cluster at
the end of the phase. The sum of intra-component counters in a cluster of type C3

is at most 3α − 1: two pairs of nodes from the component are saturated and its
counter is α each, and the counter of the third, unsaturated pair is at most α− 1 by
Observation 1. The sum of counters inside C1 is 0, and inside C2 it is α. Summing
over all ` clusters gives us ALG3(σI) ≤ (3α− 1) · ` ≤ 3α · `. Furthermore, ALG3 paid
for all requests from σE , and thus ALG3(σE) = |σE |. In total, the cost of ALG3 is at
most ALG3(σI) + ALG3(σE) + ALG3(M) ≤ 11α · `+ |σE | during the phase.

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

Springer Nature 2021 LATEX template

16 Optimal Online Balanced Graph Partitioning

Second, we lower-bound the cost of the optimal offline solution. To this end, we
fix any optimal offline algorithm OPT. By OPT(σI) and OPT(σE) we denote the
cost of OPT on requests from sequences σI and σE , respectively. Note that these
costs are defined with respect to components of ALG3 in this phase. By OPT(M) we
denote the cost of migrations performed by OPT in this phase.

The cost of OPT is lower-bounded by the cost of serving σI and the cost of
serving σE . While serving these requests, OPT may perform migrations, and we
account for them in both parts: we separately bound OPT by OPT(σI) +OPT(M)
and OPT(σE) +OPT(M). Combining those bounds and using the relation between
the maximum and the average, we obtain the bound

OPT ≥ max{OPT(σI) + OPT(M),OPT(σE) + OPT(M)}
≥ (OPT(σI) + OPT(M))/2 + (OPT(σE) + OPT(M))/2.

First, we show OPT(M) +OPT(σI) ≥ α. Assume that OPT’s partition is fixed
throughout the phase (as otherwise OPT pays α for a migration). The phase ended
when the components of ALG3 could not be partitioned without splitting them.
Hence, for every possible partition of OPT, there exists a non-collocated saturated
pair, and OPT paid for α requests that saturated the pair.

Next, we bound OPT(σE)+OPT(M). The sequence σE accounts only for unsat-
urated edges, thus by Observation 1, there are at most α − 1 requests to each pair
in σE . OPT may have at most 3` pairs of nodes collocated in its clusters, and thus
avoid paying for 3` · (α− 1) requests from σE . Hence, at least χ := |σE | − 3` · (α− 1)
requests from σE are external requests with respect to OPT’s configuration at the
beginning of the phase. Faced with these requests, OPT may serve them remotely
or perform migrations to decrease its cost. By swapping a pair of nodes (u, v), OPT
collocates u with two nodes u′, u′′, and v with two nodes v′, v′′. This may allow serv-
ing requests between (u, u′), (u, u′′), (v, v′) and (v, v′′) for free afterward. Hence, by
performing a single swap that costs 2α, OPT may avoid paying the remote serving
costs for at most 4(α− 1) requests from σE . The total cost of OPT is then at least

OPT(σE) + OPT(M) ≥ χ · 2α

4(α− 1)
≥ |σE |

2
− 2α · `.

Finally, to bound the competitive ratio, we transform the above inequality in
the following way: |σE | ≤ 2(OPT(σE) + OPT(M)) + 4α · `. For succinctness, let
ξ := OPT(σE) + OPT(M). Combining the bounds on the cost of ALG3 and OPT
during each finished phase, the competitive ratio is

ALG3(σ)

OPT(σ)
≤ 11α · `+ |σE |

α/2 + ξ/2
≤ 30α · `+ 4 · ξ

α+ ξ
≤ 30`.

It remains to consider the last, unfinished phase. First, consider the case where
the unfinished phase is also the first one. Then, we cannot charge OPT due to the
inability to partition the components. Instead, we use the fact that ALG3 and OPT
started with the same initial partition. If the input finished before the first α external
requests, then ALG3 is 1-competitive. If at least α external requests were issued, then
OPT either paid α for serving them remotely or paid α for a migration. Charging
this cost to OPT serves the purpose of charging α at the end of a finished phase, and
thus we can apply the reasoning as for a finished phase. Second, consider the case,
where there are at least two phases. Then we split the cost α of OPT accounted in the
penultimate phase into the last two phases, and we repeat the analysis of a finished
phase. This way, the competitive ratio increases at most twofold in comparison to
a finished phase, and the competitive ratio is ALG3(σ)/OPT(σ) ≤ 60`. �

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 17

Note on Arbitrary Capacity

The presented algorithm assumes the servers have capacity 3. The challenge in
generalizing beyond this fixed capacity lies in bounding the cost of finding the
closest saturated component respecting partition. For the capacity k = 3, we
bound the cost of each reconfiguration by enumerating all cluster possibilities.
We argue that the reconfiguration for k = 3 impacts only a constant number
of clusters, and its cost is bounded only in terms of k, independently of `. The
major challenge at the time of our work was bounding the reconfiguration cost
independently of `, which was later addressed by Bienkowski et al. [12].

Distributed Implementation

While we have described the algorithm globally so far, we note that it allows
for efficient distributed implementations. The algorithm performs two types
of operations that require communication with other clusters: a component
merge, and a broadcast of the end of the phase. We say that a cluster containing
3 isolated nodes is fresh. A merge of two components may require finding
a fresh cluster (for details see the proof of Lemma 2). In the following, we show
how to efficiently find a fresh cluster in a distributed manner. We organize the
clusters into an arbitrary rooted balanced binary tree, and we broadcast the
root to each cluster. Each cluster maintains the counter of fresh clusters in
its subtree. To find a fresh cluster, we traverse an arbitrary path of non-zero
counters from the root. Upon encountering a fresh cluster, we end the traversal
and decrease the counters on the followed path by 1. Summarizing, ending
the phase requires a single broadcast, and merging components has O(log `)
communication complexity.

3.4 Improved Algorithm for Online Rematching

In this section, we present RM, an algorithm for clusters of capacity k = 2.
We interpret a pair of nodes collocated in one cluster as a “matched” pair.
Hence, the problem is an online variant of the maximal matching problem
where a matched pair can separate in order to “rematch” with two other nodes.
Rematching is necessary for maximizing intra-cluster communications, which
is equivalent to minimizing inter-cluster communications. This is known as
the online rematching problem, and a non-strict 7-competitive algorithm is
already given by [7], in which the ratio comes with an additive factor O(α`2).
We do not only improve upon their competitive ratio, but also we show that
our ratio holds strictly (i.e., with no additive factor).

Our algorithm is slightly simpler than the one in [7], while our analysis is
simpler and more concise. In the analysis of the algorithm, we propose a novel
charging scheme for edges that share a vertex.

Algorithm ReMatch

The algorithm ReMatch (RM) maintains a counter C{x,y} for each pair of
nodes {x, y} and increments it on every remote request between x and y. Once

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

Springer Nature 2021 LATEX template

18 Optimal Online Balanced Graph Partitioning

C{x,y} = λ, it resets the counter C{x,y} := 0 and collocates the two nodes by
swapping one of them, say x, with the node collocated with y.

Theorem 7 For λ = α, the algorithm RM is strictly 6-competitive.

b1

a4

b2

a1

b3

a2

b4

a3

b1

b4

a4

a1

b3

b2

a2

a3

Fig. 2: Dashed lines represent external requests. An arrow from node x to
node y indicates that x replaces y. In the left configuration, OPT collocates
4 pairs by performing 4 migrations, which results in the right configuration.

The Charging Scheme

We charge both OPT and RM whenever RM collocates a pair. RM collocates
a pair always with a swap which costs 2α, while OPT may save some costs by
collocating multiple pairs at once. Thus it pays the price of only one migration
per pair (see Figure 2). Therefore, OPT possibly collocates a pair by moving
one node to the cluster of the other node paying only α, in contrast to the
swapping cost 2α incurred by RM.

Consider two pairs that share the same node, i.e., intersecting pairs, and the
set of requests that cause (first) collocations of these pairs. This set contains at
least one request to each pair, and OPT must pay a non-zero cost over requests
in this set, as it cannot have both pairs collocated at the same time. However,
we can charge this cost to OPT only the first time RM collocates a pair and
not at any later time when RM collocates it a second time. Otherwise, OPT
is possibly charged for the same cost repeatedly. For this reason, we charge
OPT a cost inflicted by a pair if and only if OPT incurs that cost after the
last time RM separates the pair.

Proof of Theorem 7 Fix an input sequence of requests σ := {σ1, . . . , σm}. Assume
that RM collocates a pair {u, v} at time t. The value of C{u,v} at t, denoted Ct{u,v},
reaches λ immediately before RM resets the counter. For any interval [t1, t2], by
σ{x,y}[t1, t2] we denote the set of all requests to a pair {x, y} that arrive during
[t1, t2]. We may use σ{x,y} whenever the interval [t1, t2] is clear from the context.

If t is not the first time that RM collocates {u, v} then let 0 < t′ < t be the
latest time when RM separates {u, v} in order to collocate some intersecting pair
{x, y} 6= {u, v}, {x, y} ∩ {u, v} 6= ∅, e.g., {x, y} = {u,w}. Else, t is the first time that
RM collocates {u, v} and let t′ := 0. Similarly, if t′ > 0 is not the first time that RM
collocates {u,w} then let 0 < t′′ < t′ be the latest time before t′ when RM separates
{u,w}. Else, t′ is the first time that RM collocates {u,w} and we let t′′ = 0.

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 19

First, we bound costs incurred by RM for requests that lead to the collocation
of {u, v} at time t ∈ T , where T := {τ ∈ [1,m] | ∃{x, y} : Cτ{x,y} = λ} is the set of

times when RM performs a collocation. By definitions of t and t′, the overall cost
of requests in σ{u,v} incurred by RM, i.e., the total cost of remote serving and the
moving cost is λ+ 2α.

Next, we bound costs incurred by RM for requests that do not lead to collocations
until the end of the sequence at t = m. Assume {u, v} is not collocated at t = m and
0 < Cm{u,v} < λ, which means RM pays Cm{u,v} for requests in σ{u,v}(t

′,m]. Then
the total cost incurred by RM is

RM(σ) =
∑
t∈T

(λ+ 2α) +
∑
{u,v}

Cm{u,v}.

Next, we bound costs incurred by OPT for requests that lead to the collocation
of {u, v} at t ∈ T . If t is the first time that RM collocates {u, v}, then OPT pays λ
for serving requests in σ{u,v}[0, t] (remotely), or α for collocating the pair and serving
(some of) the requests with cost zero. Therefore, in this case, OPT(σ{u,v}(0, t]) ≥
min {λ, α}. Otherwise, it is not the first collocation and consider times t′ and t′′

as defined previously, and let Rt := σ{u,w}(t
′′, t′] ∪ σ{u,v}(t′, t]. We define Rt′ for

the collocation at t′ analogously (see Figure 3). Then, OPT(Rt) = OPT(σ{u,w}) +
OPT(σ{u,v}).

Rt

Rt′

tt′t′′ σ{u,w} σ{u,v}t′′

Fig. 3: Illustration of the timeline used in the proof of Theorem 7. The set
Rt consists of requests to the pairs {u,w} and {u, v}, which arrive in the
interval (t′′, t]. Similarly, Rt′ consists of requests to {u,w} and some other pair
irrelevant to the analysis. Hence, requests to {u,w} are contained in both sets,
and they arrive in (t′′, t′] highlighted in red thick line.

If OPT has both pairs separated during their respective intervals, then clearly
it pays 2λ in those intervals. Note that (trivially) OPT cannot have both pairs
collocated at the same time. Else, OPT has one of the pairs, say {u, v}, already
collocated prior its respective interval, (t′, t], and keeps it so during this interval.
Then it pays zero for requests to this pair. Hence, it pays α for collocating the other
pair, in this case {u,w}, or it pays λ for serving requests in σ{u,w}. Note that OPT
may deviate from the two cases by collocating the pair after serving some of its
external requests. In any case, OPT(Rt) ≥ min {λ, α} = α.

It remains to bound the cost incurred by OPT due to requests to {u, v} that do
not lead to its collocation until the end of the sequence at t = m. We bound the
cost analogously to the case where RM collocates {u, v}. If {u, v} is not collocated in
the initial matching and RM never collocates it, then Cm{u,v} = |σ{u,v}[1,m]|. OPT

pays OPT(σ{u,v}[1,m]) ≥ min {α,Cm{u,v}}, for collocating this pair, or it pays for

requests in σ{u,v}[1,m]. Else, either {u, v} is collocated in the initial matching or

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Springer Nature 2021 LATEX template

20 Optimal Online Balanced Graph Partitioning

RM collocates it at some point. Then there exists an intersecting pair {u,w} that
is collocated by RM at t′ < m, separating {u, v}. We define times t′′ < t′ < m
analogously to the former case. Let R∗{u,v} := σ{u,w}(t

′′, t′] ∪ σ{u,v}(t′,m]. Then,

OPT must pay for collocating at least one pair or (and) serving requests to the other
pair remotely. Thus, OPT(R∗{u,v}) ≥ min {Cm{u,v}, α}.

Next, we sum up all costs incurred by OPT. By definitions of Rt and R∗{u,v}, we

have either Rt′ ∩Rt = σ{u,w} or Rt′ ∩R∗{u,v} = σ{u,w}. This means, OPT(σ{u,w})
is counted at most twice in each of the expressions OPT(Rt′) + OPT(Rt) and
OPT(Rt′) + OPT(R∗{u,v}). Hence, the total cost to OPT is

OPT(σ) =
1

2

(∑
t∈T

OPT(Rt) +
∑
{u,v}

OPT(R∗{u,v})
)
≥ 1

2

(∑
t∈T

α+
∑
{u,v}

Cm{u,v}
)
.

Finally, we bound the competitive ratio by aggregating the above bounds,
obtaining

RM(σ)/OPT(σ) ≤ 2
(∑
t∈T

3α+
∑
{u,v}

Cm{u,v}
)/(∑

t∈T
α+

∑
{u,v}

Cm{u,v}
)
≤ 6.

�

4 Discussion and Future Work

This paper revisited the online graph partitioning problem and presented sev-
eral tight bounds for the important model where capacities cannot be exceeded,
both for a general partitioning model and for a special learning model.

Our algorithms allow for efficient distributed implementations. The algo-
rithm PPL from Section 2.3 can be distributed similarly to the approach in [8].
The algorithm for k = 2 from Section 3.4 performs only local communication
for each request: counters are kept on the clusters and updated locally, and
each migration is local within two clusters that reached the collocation thresh-
old λ. Furthermore, we proposed an efficient distributed implementation of the
algorithm for k = 3 in Section 3.3.

There remain several interesting avenues for future research. A general
open direction concerns the study of the power of randomization in our set-
ting. It would generally also be interesting to study the performance of our
algorithms empirically, under realistic workloads, and engineer algorithms to
speed up computations. But there are also more specific open questions. First
open question regards the dependency on ` with resource augmentation. Our
lower bounds from Theorems 2 and 5 shed light on the dependency on ` in
the competitive ratio for the setting with augmentation. The algorithm CREP
from [7] requires (2+ε)-augmentation to guarantee the competitive ratio inde-
pendent of `. In contrast, our construction shows that the linear term ` is
inevitable if the augmentation is smaller than 4/3. This raises a question about
the tradeoffs between augmentation and the dependency on ` for the competi-
tive ratio. Another open question concerns the runtime. The algorithm Perfect
Partition Learner runs in superpolynomial time, and the dominating term in

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 21

the runtime is due to finding the communicating component-respecting parti-
tion. We hence wonder if there exists a polynomial-time algorithm achieving
an (asymptotically) optimal competitive ratio.

5 Acknowledgments

This project has received funding from the European Union’s Horizon 2020
European Research Council (ERC), grant agreement No. 864228, 2020-2025.

References

[1] Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social
network’s (datacenter) network. In: Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication, pp. 123–137
(2015)

[2] Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon, R.,
Boving, S., Desai, G., Felderman, B., Germano, P., et al.: Jupiter rising:
A decade of clos topologies and centralized control in google’s datacenter
network. ACM SIGCOMM Computer Communication review 45(4), 183–
197 (2015)

[3] Mogul, J.C., Popa, L.: What we talk about when we talk about cloud net-
work performance. ACM SIGCOMM Computer Communication Review
42(5), 44–48 (2012)

[4] Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing
Data Transfers in Computer Clusters with Orchestra. ACM SIGCOMM
41(4), 98–109 (2011)

[5] Avin, C., Ghobadi, M., Griner, C., Schmid, S.: On the complexity of traffic
traces and implications. In: Proc. ACM SIGMETRICS (2020)

[6] Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analy-
sis, (1998)

[7] Avin, C., Bienkowski, M., Loukas, A., Pacut, M., Schmid, S.: Dynamic
balanced graph partitioning. SIAM J. Discret. Math. 34(3), 1791–1812
(2020)

[8] Henzinger, M., Neumann, S., Schmid, S.: Efficient distributed work-
load (re-)embedding. In: Proceedings of ACM SIGMETRICS / IFIP
Performance 2019 (2019)

[9] Henzinger, M., Neumann, S., Raecke, H., Schmid, S.: Tight bounds for
online graph partitioning. In: Proc. ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2021)

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

Springer Nature 2021 LATEX template

22 Optimal Online Balanced Graph Partitioning

[10] Forner, T., Raecke, H., Schmid, S.: Online balanced repartitioning of
dynamic communication patterns in polynomial time. In: Proc. SIAM
Symposium on Algorithmic Principles of Computer Systems (APOCS)
(2021)

[11] Andrews, G., Eriksson, K.: Integer Partitions. Cambridge University
Press

[12] Bienkowski, M., Böhm, M., Koutecký, M., Rothvoß, T., Sgall, J., Veselý,
P.: Improved analysis of online balanced clustering. Approximation and
Online Algorithms - International Workshop (WAOA) (2021)

[13] Avin, C., Cohen, L., Parham, M., Schmid, S.: Competitive clustering of
stochastic communication patterns on a ring. Computing 101(9), 1369–
1390 (2019)

[14] Andreev, K., Räcke, H.: Balanced graph partitioning. Theory of Comput-
ing Systems 39(6), 929–939 (2006)

[15] Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some Simplified NP-
Complete Graph Problems 1(3), 237–267 (1976)

[16] Saran, H., Vazirani, V.: Finding k cuts within twice the optimal. SIAM
Journal on Computing 24(1), 101–108 (1995)

[17] Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation
schemes for dense instances of NP-hard problems. Journal of Computer
and System Sciences 58(1), 193–210 (1999)

[18] Feige, U., Krauthgamer, R., Nissim, K.: Approximating the minimum
bisection size (extended abstract). In: Proc. 32nd ACM Symposium on
Theory of Computing (STOC), pp. 530–536 (2000)

[19] Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the
minimum bisection. SIAM Journal on Computing 31(4), 1090–1118
(2002)

[20] Krauthgamer, R., Feige, U.: A polylogarithmic approximation of the
minimum bisection. SIAM Review 48(1), 99–130 (2006)

[21] Räcke, H.: Optimal hierarchica decompositions for congestion mini-
mization in networks. In: Proc. 40th ACM Symposium on Theory of
Computing (STOC), pp. 255–264 (2008)

[22] Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging
rules. Communications of the ACM 28(2), 202–208 (1985)

[23] Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young,

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Springer Nature 2021 LATEX template

Optimal Online Balanced Graph Partitioning 23

N.E.: Competitive paging algorithms. Journal of Algorithms 12(4), 685–
699 (1991)

[24] McGeoch, L., Sleator, D.: A strongly competitive randomized paging
algorithm. Algorithmica 6(6), 816–825 (1991)

[25] Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of random-
ized paging algorithms. Theoretical Computer Science 234(1–2), 203–218
(2000)

[26] Epstein, L., Imreh, C., Levin, A., Nagy-György, J.: On variants of
file caching. In: Proc. 38th Int. Colloq. on Automata, Languages and
Programming (ICALP), pp. 195–206 (2011)

[27] Epstein, L., Imreh, C., Levin, A., Nagy-György, J.: Online file caching
with rejection penalties. Algorithmica 71(2), 279–306 (2015)

[28] Irani, S.: Page replacement with multi-size pages and applications to web
caching. Algorithmica 33(3), 384–409 (2002)

[29] Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competi-
tive randomized algorithms for nonuniform problems. Algorithmica 11(6),
542–571 (1994)

[30] Stanton, I.: Streaming balanced graph partitioning algorithms for ran-
dom graphs. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’14, pp. 1287–1301 (2014)

[31] Alistarh, D., Iglesias, J., Vojnovic, M.: Streaming min-max hypergraph
partitioning. In: Advances in Neural Information Processing Systems 28,
pp. 1900–1908 (2015)

[32] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to
the Theory of NP-Completeness, (1990)

	Introduction
	Online Algorithms and Competitive Analysis
	Model
	Related Work
	Contributions

	The Learning Model
	Lower Bound
	Overview of the construction

	Lower Bound under Resource Augmentation
	Upper Bound
	Perfect Partition Learner
	Analysis
	Note on running time

	General Partitioning Model
	Lower Bound
	Ground sets

	Lower Bound for Algorithms with Resource Augmentation
	Optimal Algorithm for Clusters of Size 3
	Saturated components
	The algorithm ALG3
	Note on Arbitrary Capacity
	Distributed Implementation

	Improved Algorithm for Online Rematching
	Algorithm ReMatch
	The Charging Scheme

	Discussion and Future Work
	Acknowledgments

