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Abstract

The list update problem is a classic of computer science, where we have a list of items and
we try to optimize the cost of accessing a sequence of these items, reorganizing (or not) the
list in real time (online) or in advance (offline). We had results as early as 1976 [Rivest, 1976],
and a deeper, more general and systematical study in Borodin and El-Yaniv [2005], proving
competitiveness of many algorithms.

This problem has applications in various domains such as compression or caching, where fast
access to items in linked structures is crucial.

We will here study the competitiveness of an algorithm in the context of the list update
problem with precedence constraints. This means that we introduce the concept of dependencies,
enforcing a partial order to the items in our list.
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Chapter 1

Introduction

1.1 Context of the internship

This internship was an amazing immersion in the world of research at the University of Vienna.
I was supervised by Stefan Schmid but most of my work was done in collaboration with Maciej
Pacut and Arash Pourdamghani, through text messages most of the time and voice calls twice a
week. This allowed them to help me as much as I needed and give me directions.

1.2 The list update problem

1.2.1 Basic context

The list update problem is as follows : We have a set of n items contained in a list L, indexed
from 1 to n. We also have a request sequence σ = (σ1, . . . σm) consisting of accesses to items in
the list L.

Example :
L = [1, 2, 3, 4, 5]
σ = [3, 2, 4, 4, 1, 3, 4, 2, 1, 5]

The goal of our research is to design and analyze algorithms that minimize the overall cost.

1.3 Cost

The total cost of running an algorithm ALG through a request sequence σ is denoted by ALG(σ)
and is the sum of the access cost and the reconfiguration cost.

1.3.1 Access Cost

The access cost of a request σj equals the number of comparisons needed to find σj in the list L.
This means that the access cost of the item at position i in L is i. Note : Later in this report,
we use the Partial Cost of an algorithm, ALG∗(σ). In this cost model, the last comparison is
free, which means that accessing the item at position i costs i− 1.

1.3.2 Reconfiguration Cost

In addition to access cost, we define the reconfiguration cost, the cost of moving items in our list.
There are two models used to compute the reconfiguration cost:

Firstly, the free exchange model, in which the the accessed item can move (up to in front of
the list) without any additional cost. As the name implies, these operations have no impact on
the cost
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Secondly, we consider the case that each swap of two items costs 1, the paid exchange model.
A reconfiguration in paid exchange model can be moving the accessed item before accessing it,
or moving items different from the one accessed.

1.4 Types of algorithms

The algorithms solutions to this problem are split into two categories : online and offline
algorithms.

1.4.1 Offline Algorithms

An offline algorithm knows the entire sequence as it runs, while an online algorithm only knows
the requests up until the current one.

1.4.2 Online Algorithms

Since the goal is to work on arbitrarily long request sequences and to deal with problems where
we continuously treat requests as they come, we try to design the best possible online algorithms.

1.4.3 Optimal Algorithm

The optimal algorithm is a baseline we use to compute the efficiency of our algorithms. Reingold
and Westbrook [1996] and Divakaran [2014] exposed optimal algorithms running in Θ(2n(n−1)!l)
time, where n is the length of the sequence and l is the number of nodes (the running time is
not to be confused with the cost). This shows that we generally have no way to express this
algorithm, which requires us to designing methods to get bounds on its cost.

1.5 Competitive ratio

To characterize the efficiency of an algorithm, we use the competitive ratio. We say that an
algorithm ALG has a competitive ratio c if :

∃a,∀σ,ALG(σ) ≤ c ·OPT (σ) + a

ALG is strictly competitive if a = 0.

1.6 Some Known Algorithms

We present a few classic algorithms

1.6.1 Move To Front

The algorithm Move To Front (MTF) is one of the simplest algorithms there are : It simply
moves the accessed item to the head of the list, using free exchanges.

1.6.2 Transpose

The algorithm Transpose (TRANS) simply transposes the accessed item with the previous one in
the list.
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1.6.3 Frequency Count

We need to use counters for each item, increasing it by one after every access. We then move
the item to keep the list sorted by frequency. This algorithm is obviously more complicated to
implement and more costly (in terms of memory) to run.

6



Chapter 2

Adding precedence constraints

In some cases, like firewall rules, some items depend on one another (for firewall rules, we often
have a general rule over a subnet, then some more specific rules for some IPs or protocols, and
the general rule needs to be applied before the specific ones). This requires us to introduce
precedence constraints.

2.1 Model

Let G be a Directed Acyclic Graph with our items 1, ..n as nodes. We say that node i depends
on node j if there is an edge between i and j.

dependencies

8

4

2

5 7

1

3
6

Figure 2.1: An example of a set of firewall rules and the associated dependency graph.
Credits : Pacut et al. [2021], page 4

This implies constraints on our list, mainly that any node must be before all of its depen-
dencies, enforcing a partial order in our list.

2.2 Algorithm MRF

We need to adapt the list update algorithms to comply with the constraints. One of the
(competitive) solutions found is the algorithm Move Recursively Forward :
Pacut et al. [2021] defines MRF as :
The algorithm uses a recursive procedure. The procedure MRF(y) moves the node y forward
(by transposing it with the preceding nodes) until it encounters any of its dependency nodes, say
z, and recursively calls MRF(z). Upon receiving an access request to a node σt, MRF locates
σt on the list and invokes the procedure MRF(σt). We present the pseudocode of MRF in
Algorithm 1. We say that a node y is a direct dependency of a node z if y is the dependency of z
that is located at the furthest position on the list. By pos(z) we denote the position of node z in
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the list maintained by the algorithm, counting from the head of the list (recall that the position
of the first node is 1).

Algorithm 1: The algorithm MRF.
Input :An access request to node σt

1 Access σt
2 Run the procedure MRF(σt)

Procedure MRF(y):
3 if y has no dependencies then
4 Move y to the front of the list
5 else
6 Let z be the direct dependency of y
7 Move node y to pos(z) + 1
8 Run the procedure MRF(z)
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Chapter 3

Stochastic Model

3.1 Model

Rivest [1976] introduces the stochastic model for computing competitive ratios in the list access
problem. The basic premise of this model is that each item x is associated with a probability
px. This allows us to use the average cost of each access instead of the total cost of the request
sequence (which we assume is arbitrarily long in this model). This makes computing costs way
easier using a probabilistic approach.

3.2 Competitive ratio for MTF

3.2.1 Cost for MTF

Rivest [1976] gives a proof for the competitive ratio of MTF in the stochastic setting by introducing
b(i, j), the probability that item i is in front of item j in our list :
Note : The law of large numbers allows us to get rid of the timing dependency and assume that
all our expressions are time-independent.
Note 2 : This proof is given in the Free exchange model, in which all moves of the currently
accessed node are free. In this model, in particular, the cost of MTF is exactly its access cost.

We have the average number of items in front of item j :
∑

i 6=j b(i, j). Then, the access cost,
which is the position of the item in the list, is:

pos(j) = 1 +
∑
i 6=j

b(i, j)

We then simply need to compute b(i, j).
By definition, b(i, j) is the probability that item i is in front of item j in our list. We know

that, according to the algorithm MTF, item i will be in front of item j if, and only if, item i was
accessed after item j. This means that item i was accessed once at some point, and then neither
i nor j was accessed afterwards. This gives us the following probability:

b(i, j) =

∞∑
k=1

pi(1− pi − pj)k−1

=
pi

pi + pj

Putting this all together gives us the following cost for MTF:
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EMTF =
n∑
j=1

pjpos(j)

=
n∑
j=1

pj(1 +
∑
i 6=j

b(i, j))

=

n∑
j=1

pj(1 +
∑
i 6=j

pi
pi + pj

)

= 1 +

n∑
j=1

pj · 2
j−1∑
i=1

pi
pi + pj

≤ 1 + 2

n∑
j=1

pj(j − 1)

(3.1)

3.2.2 Cost for OPT

Without any dependencies, the optimal algorithm creates a list in which items are ordered with
decreasing probability. Therefore, the expected cost of OPT is:

EOPT =

n∑
j=1

jpj

3.2.3 Competitive ratio

Now that we have the expected cost for MTF and OPT, we can get the competitive ratio for MTF:

RMTF =
EMTF

EOPT

≤
1 + 2

∑n
j=1 jpj∑n

j=1 jpj

=
2x− 1

x

= 2− 1

x

(3.2)

Where x =
∑n

j=1 jpj .
This gives us a competitive ratio of 2.

3.3 Competitive ratio for MRF

3.3.1 Preliminaries

We use a similar method for MRF, with a few changes. We are computing the cost of our
algorithm in the paid exchange model, where all moves are costly. Of course, the dependencies
also make this harder. We give all our results under Assumption 3.3.1 :

Assumption 3.3.1. The DAG G is a forest.

This assumption implies that all nodes depend on one other node at most.
We define the following notations:

– MRF (σ), MRFA(σ) and MRFM (σ) are respectively the cost of MRF, the access cost of
MRF and the cost of the reconfigurations in running MRF on the sequence σ.
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– STATD (resp. STAT) is the optimal static algorithm with dependencies (resp. without).

– b(i, j) is the asymptotic probability that i is before j in our list.

– γx is the sum of the probabilities for all the nodes depending on x (including x itself)

– D(x) are the nodes of the subtree of all nodes depending on x (the descendants of x).

– A(x) is the set of all the nodes x depends on (the ancestors of x and x).

– ψx is the number of nodes in x’s complete dependency tree.

– δx is the number of nodes x depends on.

– par(i) is the parent of i in its complete dependency tree. If i does not have a parent, we
give him a ’virtual’ one that we place at position 0 in our list.

– par(m)(i) is the m-th ancestor of i

– R is the set of all the roots in the forest.

Theorem 3.3.2. If the input consist of independent and identically distributed random variables
and the dependency graph G is a forest, then the expected cost for Move Recursively Forward cost
is

MRF (σ) ≤ 2(1+
n∑
j=1

pj(δj+
∑

i/∈A(x)∪D(x)

∏
l∈A(i)

γl

(
1

γj + γl
+

1

γl(1− γj)
(1 + δj −

1− (γj)
δj+1

1− γj

)
)).

Lemma 3.3.3. In the dependency graph is a forest, we have the following values for b(i, j)

b(i, j) =


1 if j depends on i (1)
0 if i depends on j (2)∏
l∈A(i)

γl

 1

γj + γl
+

1

γl
·
δj∑
m=0

m∑
k=1

(γj)
k−1 · b(l, parm(j))

 else (3)

(3.3)

Proof. The dependency relation in G enforces order between nodes, thus the cases (1) and (2)
follow. In the remaining of this proof we consider the case where the nodes are independent in G.

The node i can be before j in the list if all four of the following conditions are met:

(a) i itself or a node depending on it has been accessed

(b) i could be moved ahead of j

(c) j has not been moved ahead of i afterwards

(d) i was not moved afterwards

(a) happens with probability γi.
(b) is exactly b(par(i), j) : we can use the strong law of large numbers to get rid of the timing
dependency in our case
(c) and (d) can be combined, forming the event : "neither i nor j have been moved at any point
afterwards or i was not moved and j did not overtake i". The first part can be translated to :

∞∑
k=1

(1− γj − γi)k−1 =
1

γj + γi
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"j did not overtake i" can be expressed as "j was not moved enough to overtake i". To overtake
i, j would need to be moved m times, where m is the number of ancestors of j between i and j.
This gives us the following probability for the whole second part :

∞∑
k=1

(1− γi)k−1 ·
δj∑
m=0

m∑
k=1

(γj)
k−1 · b(i, parm(j))

=
1

γi
·
δj∑
m=0

m∑
k=1

(γj)
k−1 · b(i, parm(j))

(3.4)

This gives us the combined probability in case (3):

b(i, j) = γi · b(par(i), j) ·

 1

γj + γi
+

1

γi
·
δj∑
m=0

m∑
k=1

(γj)
k−1 · b(i, parm(j))


=
∏
l∈A(i)

γl

 1

γj + γl
+

1

γl
·
δj∑
m=0

m∑
k=1

(γj)
k−1 · b(l, parm(j))

 (3.5)

Proof of Theorem 3.3.2. The proof is similar in structure to Rivest [1976]. We first calculate the
value of b(i, j) in Lemma 3.3.3 and then use this value to get the access cost of any element of
our list using the results from Rivest [1976]. From this, we use the result from Pacut et al. [2021]
that the rearrangement cost is bound by the access cost and get the bound total expected cost
for MRF.

From b(i, j), we can get the expected position of node j :

E[pos(j)] = 1 +
∑
i 6=j

P (pos(i) < pos(j))

= 1 +
∑
i 6=j

b(i, j)
(3.6)
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From this, the expected access cost for MRF MRFA(σ) comes naturally :

MRFA(σ) =
n∑
j=1

pjE[pos(j)]

=
n∑
j=1

pj(1 +
∑
i 6=j

b(i, j))

=

n∑
j=1

pj(1 +
∑

l∈A(j)−{j}

1 +
∑

i/∈A(x)∪D(x)

b(i, j)) (see Lemma 3.3.3)

= 1 +
n∑
j=1

pj(δj +
∑

i/∈A(x)∪D(x)

b(i, j))

= 1 +
n∑
j=1

pj(δj +
∑

i/∈A(x)∪D(x)

∏
l∈A(i)

γl

 1

γj + γl
+

1

γl
·
δj∑
m=0

m∑
k=1

(γj)
k−1 · b(l, parm(j))

)

≤ 1 +
n∑
j=1

pj(δj +
∑

i/∈A(x)∪D(x)

∏
l∈A(i)

γl

 1

γj + γl
+

1

γl
·
δj∑
m=0

m∑
k=1

(γj)
k−1

)

= 1 +

n∑
j=1

pj(δj +
∑

i/∈A(x)∪D(x)

∏
l∈A(i)

γl

 1

γj + γl
+

1

γl
·
δj∑
m=0

1− (γj)
k−1

1− γj

)

= 1 +

n∑
j=1

pj(δj +
∑

i/∈A(x)∪D(x)

∏
l∈A(i)

γl

 1

γj + γl
+

1

γl(1− γj)
(1 + δj −

δj∑
m=0

(γj)
k−1

)

= 1 +
n∑
j=1

pj(δj +
∑

i/∈A(x)∪D(x)

∏
l∈A(i)

γl

(
1

γj + γl
+

1

γl(1− γj)
(1 + δj −

1− (γj)
δj+1

1− γj

)
)

(3.7)
Pacut et al. [2021] proves that the rearrangement cost for MRF is bound by its access cost,

hence the final bound.

3.3.2 Bound on the cost for MRF

Theorem 3.3.4. In the case of dependency trees, we have the following bound on the cost of
MRF :

MRF (σ) ≤ 2

 n∑
j=1

pj(n− |D(j)|)−
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

(
γj

γj + γi
)


Lemma 3.3.5. In the case of dependency trees, b(i, j) can be bounded by:

b(i, j) ≤


γi

γi+γj
if j is a root and if i does not depend on j

0 if j depends on i
1 if i depends on j or if j is not a root

Proof of Lemma 3.3.5. We know that b(i, j) is bounded by 1. We can then replace in case 3 of
Lemma 3.3.3:

b(i, j) ≤ γi
γi + γj

+

δj∑
m=0

m∑
k=1

γk−1j
(3.8)

The second term is greater than 1 if δj is positive. Hence the bound.
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Proof of Theorem 3.3.4. By using the bound for the cost, we get :

MRFA(σ) = 1 +
n∑
j=1

pj
∑
i 6=j

b(i, j)

≤ 1 +

n∑
j=1

pj
∑

i∈A(j)−{j}

1 +
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

γi
γi + γj

+
∑
j /∈R

pj
∑

i/∈D(j)
⋃
A(j)

1

= 1 +
n∑
j=1

pjδj +
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

γi
γi + γj

+
∑
j /∈R

pj(n− |D(j)| − δj − 1)

= 1 +
n∑
j=1

pjδj +
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

(1− γj
γi + γj

) +
∑
j /∈R

pj(n− |D(j)| − δj − 1)

= 1 +
n∑
j=1

pjδj +
∑
j∈R

pj(n− |D(j)| − 1) +
∑
j /∈R

pj(n− |D(j)| − δj − 1)−
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

(
γj

γj + γi
)

= 1 +

n∑
j=1

pjδj +
∑
j∈R

pj(n− |D(j)| − δj − 1)−
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

(
γj

γj + γi
)

= 1 +
n∑
j=1

pj(n− |D(j)| − 1)−
∑
j∈R

pj
∑

i/∈A(x)∪D(x)

(
γj

γj + γi
)

(3.9)

3.3.3 Bound for the cost of STATD

Theorem 3.3.6. For dependency trees, we have the following lower bound for the cost of the
static optimal algorithm:

ESTATD ≥ 1 +max(

n∑
j=1

(j − 1)pj ,

n∑
j=1

δjpj)

Proof of Theorem 3.3.6. Each node is behind all the nodes it depends on. This means that
pos(x) ≥ δx+1. Then, we have ESTATD ≥ 1+

∑n
j=1 δjpj on average. Furthermore, we also know

that this algorithm is more expensive than the optimal static algorithm without dependencies,
hence the final bound.

3.3.4 Competitive ratio

We can see that the cost of MRF, even after as many simplications as possible, is still extremely
complicated.
A few directions were explored on simplifying it, but the bounds always became loose in some
cases, preventing us from getting a good bound (Pacut et al. [2021] proved that a bound of 4 exists).

3.3.5 Conclusion

This did not yield results, but the code in 6.1.2 seemed to indicate an upper bound of π in the
stochastic setting, which would be consistent with Chung et al. [1988]’s Theorem 1, stating a
result of π2 for MRF in this setting.
The major issues we had at the end of this research were, first, the complexity of our equations,
and secondly the bound on STATD. This is the bound that we could not optimize for all request
sequences and this is the part that needs more time or a different way to dela with.
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Chapter 4

Non-stochastic bound

As mentioned, Pacut et al. [2021] proved a ratio of 4 for MRF in the paid exchange model.
However, that proof is fairly long and complicated, and not easily applicable to other algorithms.
We present here a more replicable way to prove the same ratio of 4, based on Borodin and
El-Yaniv [2005].

4.1 Preliminaries

Similarily to Borodin’s book, we define the following notations :

– B(x, j) is equal to one if node x is in front of node σj (at the time of accessing j), zero
otherwise

– post(x) is the position of node x in our list at time t.

– σxy is the request sequence stripped of all requests to nodes different from x and y.

– a(x) is the number of ancestors of node x

– occ(x, σ) is the number of occurences of node x in the request sequence σ

4.2 List Factoring

4.2.1 Original List Factoring Technique

The objective of the list factoring technique for competitive analysis, as defined in Borodin and
El-Yaniv [2005] in section 1.6, is to simplify the problem and only deal with pairs of items.
Most algorithms then become very simple to characterize and the costs are easy to compute.

To then come back to the actual cost of our algorithm, we need a property called the pairwise
property. This is satisfied if, at all times, the relative positions of nodes x and y in the list
generated by running the algorithm on the complete sequence is the same as their position in the
list generated by running the algorithm on the striiped sequence, with only accesses to x and y.

4.2.2 In our Case

We cannot use the list factoring technique as-is because MRF obviously does not respect the
Pairwise property lemma (take the case where x and y depend on one another, for example).
This means that we need to develop an alternative way to use the list factoring technique, that
will take the dependency relationships into account.
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Lemma 4.2.1. ALG satisfies the weak pairwise property if and only if :

∀x 6= y,ALGxy(σ) ≤ ALG(σxy)

Where
ALGxy(σ) =

∑
j,σj∈{x,y}

[B(x, j) +B(y, j)]

Lemma 4.2.2. If ALG satisfies the weak pairwise property, then the ratio over the stripped
sequences holds over the full sequence. This means the following :

ALG(σxy) ≤ c ·OPT (σxy) =⇒
∑
x 6=y

ALGxy(σ) ≤ c ·
∑
x 6=y

OPTxy(σ)

Proof. Borodin and El-Yaniv [2005] showed this result in the case without precedence constraints.
His results can be adapted to the case of an algorithm satisfying the weak pairwise property :
First, we want to prove the following : OPT (σxy) ≤ OPTA,xy(σ) +OPTM,xy(σ).
To get this result, we notice that the left hand side of the inequality is the cost of an algorithm
acting on x and y, which means that its cost is higher than that of OPT. We also know that
OPT (σ) =

∑
x 6=y(OPTA,xy +OPTM,xy), which means that the ratio on the stripped sequences

holds over the ratio for the pairs

ALG(σxy) ≤ c ·OPT (σxy)

=⇒ ALGxy(σ) ≤ c ·OPTxy(σ)
(4.1)

This gives us, after summing :

ALG(σxy) ≤ c ·OPT (σxy)

=⇒
∑
x 6=y

ALGxy(σ) ≤ c
∑
x 6=y
·OPTxy(σ) (4.2)

4.3 Case of MRF

Theorem 4.3.1 (Cost of MRF split by pairs of nodes). The cost of MRF can be expressed as :

MRF (σ) = 2
∑
x 6=y

MRFxy(σ)−
n∑
j=1

a(σj)

Proof. We can notice that the access cost at iteration j is pos(σj). Also, the exchanges at
that time occur when we move the node and its parents forward. This gives us a cost for the
reconfiguration at iteration j of posj(σj)− a(σj).
Then, the total cost can be expressed as :

MRF (σ) = MRFA(σ) +MRFM (σ)

=

n∑
j=1

(2posj(σj)− a(σj))

=

n∑
j=1

(
2
∑
x∈L

B(x, j)

)
−

n∑
j=1

a(σj)

=
∑
x∈L

∑
y∈L

2
∑
j,σj=y

B(x, j)−
n∑
j=1

a(σj)

=
∑
x,y∈L

2
∑

j:σj∈{x,y}

B(x, j)−
n∑
j=1

a(σj)

(4.3)
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Theorem 4.3.2 (Weak pairwise property for MRF). MRF satisfies the weak pairwise property.

This assures the following property for MRF :

MRF (σ) ≤ 2
∑
x6=y

MRF (σxy)

Proof. MRF (σxy) is the cost of running the algorithm on the stripped sequence. This will be,
as shown by Theorem 4.3.1, equal to :

MRF (σxy) = 2MRFxy(σ)− a(x)occ(x, σ)− a(y)occ(y, σ)

Furthermore, a(x) is the number of ancestors of x, which means that pos(x) > a(x) at all times.
Then, a(x)occ(x, σ)+a(y)occ(y, σ) is less than even the optimal cost of any algorithm for treating
the requests to x and y in σ. This means that, in particular, it is less than MRFxy(σ).
Then, we can write :

MRF (σxy) ≥MRFxy(σ)

Hence the result, by replacing in Theorem 4.3.1.

Theorem 4.3.3 (Competitive ratio for MRF). MRF is 4-competitive in the paid exchange model.

Proof. For an unrelated pair of nodes, serving a request can cost these values for MRF and OPT:

Front node Back node
MRF 1 3
OPT 1 or 2 2 or 3

On such a pair, let i, j be two indexes of requests in σxy such as these requests cost 3 to treat
with MRF, and there are no requests with cost 3 in between, with i < j.

Let’s also assume that x is in front before treating request i. Then, MRF will move y in front,
costing 3 (2 for access, one for the move). All following requests then cost 1 until j, which costs 3
again. This gives us a total cost of 3 + 3 + (j − i− 1) = 5 + j − i for MRF.

While treating this request, the nodes are both accessed by OPT, meaning that at some point,
it will cost 2 to treat a request. This gives us a lower bound on the cost for OPT of 2 + j − i.

Thus, we have the following competitive ratio for MRF over two unrelated nodes :

MRF (σxy)

OPT (σxy)
≤ 5 + j − i

2 + j − i

What’s more, we know that i < j, and this means that j − i ≥ 1.
Then, we have the following ratio :

MRF (σxy)

OPT (σxy)
≤ 5 + 1

2 + 1
= 2

For related nodes, the reasoning is simple : the list is fixed, which means that both MRF and
OPT have the same cost over these nodes, and the ratio for these nodes is one.

This gives us a ratio of 2 for the stripped sequences. In the case of MRF, we know that
MRF (σ) ≤ 2

∑
x 6=yMRF (σxy), hence the result.

Note : The full ratio of 2 · 5+j−i2+j−i decreases with locality, down to two as the number of
requests to the same node between indexes i and j increases.
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4.4 Conclusion

We have shown that, as long as an algorithm satisfies the waek pairwise property, we can easily
switch from the competitive ratio over pairs of nodes to the full competitive ratio.

This is, as announced a repeatable way to compute the competitive ratio of algorithms in the
paid exchange model even for algorithms in the precedence constraint setting.

Note : For MRF itself, the ratio could maybe be improved by reasoning differently in the
cases where j − i is greater than 1 or not. This was pointed ouut by Arash at the end of the
internship and we were not able to dedicate it the time it needed unfortunately.
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Chapter 5

Locality

5.1 Preliminaries

This work is based on Albers and Lauer [2016]. We define the following notations :

– ALGM (t, σ) is the cost of moving the items at time t for algorithm ALG

– ALGM,xy(σ) is the cost of the moves involving both x and y for algorithm ALG

– l(σxy) is the number of long runs in the stripped sequence

– lc(σxy) is the number of long run changes in sequence σxy

– r(σxy) is the number of runs in σxy

– fe(σxy) is equal to one if and only if the sequence ends with a long run change.

– fb(σxy) is equal to one if and only if the first requested item is in front in the list at that
time.

– for all these notations s(σxy), s(σ) is the sum of s(σxy) over all pairs of nodes.

– A subscript U means that it is the sum of all the considered objects over unrelated nodes,
and a subscript R will be sum sum over the related nodes. Also, |U| is the number of pairs
of unrelated nodes and |R| is the number of pairs of related nodes.

– η(σ), where x and y are related and x is an ancestor of y is equal to the sum of occ(y,σ)
|σ|

over all pairs of related nodes.

5.2 A definition of locality

Locality is a way to characterize the way nodes are accessed in the list update problem. We say
that a sequence has high locality if an accessed node has higher chances to be accessed again.
This has been expressed by Albers and Lauer [2016] using a number called λ. This is a parameter
that grows closer to 1 with high locality. Its definition in Albers and Lauer [2016] is as follows :
A class Σ of requests satisfies λ-locality if for all requests σ ∈ Σ,

λ =
lc(σ)

r(σ)

This means that this parameter grows closer to one as the proportion of long runs increases, and
gets down to 0 as it decreases.
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As we do with other notations, we adapt this to our model of precedence constraints, giving us
the parameter λU : A class Σ of requests satisfies λ-locality if for all requests σ ∈ Σ,

λ =
lc(σ)

r(σ)

Locality itself is often observed, again in the case of firewall rules, a user using an API or browsing
a website will often be requesting content from the same server multiple times in a row (for a
website, the user need the basic page as well as all the images, scripts and stylesheets).

5.3 A new way to write the cost

We write the cost of any algorithm ALG as :

ALG(σ) =
n∑
t=1

(∑
x∈L

B(x, t) +ALGM (t, σ)

)
+ n

=
∑
x 6=y

∑
t:σt∈{x,y}

B(x, t) +
n∑
t=1

ALGM (t, σ) + n

=
∑
x 6=y

ALG∗xy(σ) + |σ|

(5.1)

Where ALG∗xy(σ) =
∑

t:σt∈{x,y}(B(x, t) +B(y, t)) +ALGM,xy(σ)

5.4 Analysis of the phases

We split σxy into phases π(1), ..π(pxy) ending with either a long run or the last request of σxy if
it is a short run. If π(i) starts with x, it has one of the 2 following forms :

(a) (xy)kxl, k ≥ 0, l ≥ 1

(b) (xy)kyl, k ≥ 1, l ≥ 0

The phases starting with y can be obtained by exchanging the roles of x and y. We will study
phases starting with x from now on.

Theorem 5.4.1. The full cost of OPT over σ is :

OPT (σ) ≥
∑
x 6=y

OPT ∗(σxy) + |σ|

≥
rU (σ) + 3lc,U (σ)− 2fe,U (σ)− fb,U (σ)

2
+OPT ∗R(σ) + |σ|

(5.2)

Proof. An optimal algorithm over two nodes is easy to state :

– If the two nodes are related, the list is fixed and the algorithm doesn’t do anything

– If not, the algorithm will move the requested node at the beginning of every long run

An intuitive proof is as follows :

– Accessing the back node twice in a row costs 2 + 2 = 4, and each subsequent access costs 2
too.

– Accessing the back node and moving it to the front costs 2 + 1 + 1 = 4, and each subsequent
access costs 1.
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This means that if we don’t move nodes, a long run of length k to the back node costs 2k while
the same long run costs 3 + k if we move the node.

Given that the previous phase ended with a long run, and that the current one starts with
x, we know that the previous phase ended with a long run to y. This assures us that at the
beginning of phase π(i), i 6= 1, y is in front of the list generated by our OPT.

We will deal with phases that are neither the first nor the last one. This assures us two things
:

– y is in front at the beginning of the phase

– the phase ends with either a long run of x or y.

Then, the cost of sequence (b) is easy to determine, since no node will be moved. Since we
are using the partial cost model, each access to y is free and each access to x costs 1. We have
2k runs and k accesses to x. Hence a cost of r(π(i))2 .

For (a), we have 2k + 1 runs, k + 1 requests to x and 1 move, which gives us a cost of
r(π(i))+1

2 + 1.
This gives us the followinng cost for these phases :

∀i ∈ [2, pxy − 1], OPT ∗(π(i)) =
r(π(i)) + 3lc(π(i))

2

For the last run, the only difference will be that we don’t move the node in sequence (a) if it
doesn’t end in a long run change. Then, we get a cost of :

OPT ∗(π(pxy)) =
r(π(pxy)) + 3lc(π(pxy))

2
− fe(σxy)

For the first one, the cost depends on which node is in front of the list at the beginning. If y
is in front, the cost is the same as for all phases but the last.
If x is in front, then (a) costs k = r(π(1))−1

2 = r(π(1))+3lc(π(1))
2 − 1

2 . (b) costs k+2 = r(π(1))+3lc(π(1))
2 +

1
2 .
This means that, in this case,

OPT ∗(π(1)) ≥ r(π(1)) + 3lc(π(1))− fb(σxy)
2

This gives us, for unrelated nodes :

OPT ∗(σxy) ≥
r(σxy) + 3lc(σxy)− 2fe(σxy)− fb(σxy)

2

Theorem 5.4.2. The full cost of MRF is :

MRF (σ) ≤MRF ∗U (σ) +MRF ∗R(σ) + |σ|
≤ 2rU (σ)− 2fb,U (σ) +OPT ∗R(σ) + |σ|

(5.3)

Proof. The cost of MRF for pairs of unrelated nodes is easy to compute : Every run other than
the first one costs 2 (since we access the back node and move it to the front, then we don’t pay
for the rest of the run). The first run will cost 2 if the first accessed node is in the back and 0
otherwise. This gives us the following cost for a pair of unrelated nodes :

MRF ∗U (σxy) = 2r(σxy)− 2fb(σxy)

Furthermore, the cost of running the algorithm on pairs of related nodes is thee same as for OPT:

OPT ∗R(σ) = MRF ∗R(σ)
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Theorem 5.4.3. Cost over related nodes The partial cost of these algorithms over the related
nodes is :

OPT ∗R(σ) = η(σ)|σ|

Proof. The partial cost over any pair is equal to the number of accesses to the back node. Since
the ancestor node is always in front in this case, the result simply comes from summing over all
pairs.

5.5 Strict competitive ratio

Theorem 5.5.1. MRF is strictly 4-competitive and the ratio goes as low as 2 as locality over
unrelated nodes increases :

MRF (σ)

OPT (σ)
≤ 4

1 + λU

Proof. Let’s introduce the following notations :

– α(σ) =
(1+η(σ))|σ|−fb,U

rU (σ)

– β(σ) =
3lc,U (σ)−2fe,U (σ)

rU (σ)

This gives us the following competitve ratio for MRF :

R(σ) =
MRF (σ)

OPT (σ)

≤
MRF ∗U (σ) + η(σ)|σ|+ |σ|
OPT ∗U (σ) + η(σ)|σ|+ |σ|

≤ 4
rU (σ)− fb,U (σ) + (η(σ) + 1)|σ|

rU (σ) + 3lc,U (σ)− 2fe,U (σ)− fb,U (σ) + 2(1 + η(σ))|σ|

≤ 4
1 + α(σ)

1 + 2α(σ) + β(σ)

≤ 4

1 + β(σ)+α(σ)
1+α(σ)

(5.4)

To get our result, we now study two cases :

– If α < 0, then β(σ)+α(σ)
1+α(σ) ≥

lc,U (σ)
rU (σ) and we get the result from the last line

– If α ≥ 0, the result comes directly from the second to last line

5.6 Competitive ratio

Theorem 5.6.1. MRF is 4
1+3λU

competitive.

Proof. We introduce the following notations :

– α′(σ) =
(1+η(σ))|σ|−fb,U (σ)−fe,U (σ)

rU (σ)

– β′(σ) =
3lc,U (σ)
rU (σ)
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We can write :

MRF (σ) ≤ 4OPT (σ)
1 + α(σ)

1 + 2α(σ) + β(σ)

≤ 4OPT (σ)

(
1 + α(σ)− 2fe,U (σ)/rU (σ)

1 + 2α(σ) + β(σ)
+

2fe,U (σ)/rU (σ)

1 + 2α(σ) + β(σ)

)
≤ 4OPT (σ)

(
1 + α′(σ)

1 + 2α′(σ) + β′(σ)
+

2fe,U (σ)/rU (σ)

1 + 2α′(σ) + β′(σ)

)

≤ 4OPT (σ)

 1

1 + β′(σ)+α′(σ)
1+α′(σ)

+
2fe,U (σ)/rU (σ)

1 + 2α′(σ) + β′(σ)


≤ 4

1 + 3λU
OPT (σ) + 4

2fe,U (σ)OPT (σ)/rU (σ)

1 + 2α(σ) + β(σ)

(5.5)

Furthermore, the proof for the cost of OPT also shows that (by looking closely at the proof for
the first run of the phase) :

OPT (σ) ≤
rU (σ) + 3lc,U (σ)− 2fe,U (σ) + fb,U (σ) + 2(1 + η(σ))|σ|

2

This means that :
OPT (σ)

rU (σ)
≤

1 + 2α(σ) + β(σ) + 2fb,U (σ)

2

Adding that into Equation 5.5 shows that :

MRF (σ) ≤ 4

1 + 3λU
OPT (σ) + 4

2fe,U (σ)OPT (σ)/rU (σ)

1 + 2α(σ) + β(σ)

≤ 4

1 + 3λU
OPT (σ) + 4fe,U (σ)

1 + 2α(σ) + β(σ) + 2fb,U
1 + 2α(σ) + β(σ)

≤ 4

1 + 3λU
OPT (σ) + 4fe,U (σ)

(
1 +

2fb,U
1 + 2α(σ) + β(σ)

)
≤ 4

1 + 3λU
OPT (σ) + 4fe,U (σ) (1 + 2fb,U )

(5.6)

Both fb,U (σ) and fe,U (σ) are depending only on the number of nodes, and quadratically. This
means that : MRF (σ) ≤ 4

1+3λU
+O(l4)

5.7 Conclusion

Once again, we showed a competitive ratio of 4. However, this is more specific than the previous
results, since this ratio now gets better as λU and locality grow.
We showed a competitive ratio going down to the ideal ratio of one and a strict ratio going
down to two. As the goal of these algorithms is to work indefinitely on a fixed set of nodes
(take firewall rules for example) l quickly gets very small compared to the current length of the
sequence, hence the usefulness of a non-strict ratio.
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Chapter 6

Conclusion

We have worked to show a competitive ratio for MRF 3 different ways.
The first way involved working in the case where the accesses follow a distribution but did not
yield definite results as the calculations quickly grew complicated and we did not have a good
enough bound on the cost of the optimal algorithm. However, implementing our equations seemed
to suggest that a bound of π might be reachable, similarily to the bound of π2 from Chung et al.
[1988].
The second way allowed us to design a systematic way to prove bounds for algorithms in the
paid exchange model with precedence constraints using the weak pairwise property. This should
prove useful as it is linked to other research in the department.
The last way was the actual goal of the internship, working with locality of reference. In this
case, we were able to show the ratio of 4, but with a twist as we have a strict ratio going down
to 2 and a non-strict one going down to the ideal ratio of one.
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Appendix

6.1 Code

6.1.1 Optimal algorithm in the stochastic setting

1 #!/usr/bin/env python3
2

3 from ratio_MRF import * # Nodes , generators etc.
4

5 # We have the following relation :
6 # E_{STATD }^0 = 0
7 # E_{STATD }^{n + 1} = E_{STATD}^n + p_{n+1} pos(n+1) + sum_{i behind n+1 in

the new list} p_i
8 # We then simply need to calculate the new value for all possible positions of

n+1 and take the minimum
9

10 def next_iter(g, prev , new_node , prev_cost):
11 # prev needs to be a list of (index , probability) tuples
12 # new_node should be a node
13 n = len(prev)
14 # get partial costs
15 part_cost = [0] * (n + 1)
16 for i in range(n-1, -1, -1):
17 part_cost[i] = part_cost[i+1] + (i + 1) * prev[i].p
18

19

20 next = []
21 for i in range(n + 1):
22 next.append(prev.copy())
23 next_cost = [-1] * (n + 1)
24 # We need to find the parent of our nodes and the list of nodes in its tree
25 # locate the node in the tree
26 t = 0
27 for u in g:
28 if new_node.i in u:
29 t = u
30 break
31

32 # Get children and porent
33 try:
34 par = t.lambda_l(new_node.i)[1]
35 found_parent = False
36 except IndexError:
37 par = 0
38 found_parent = True
39 children = new_node.children
40

41 i_par = -1
42 i_child = -1
43

44 for i in range(n + 1):
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45 if i == n:
46 next[n]. append(new_node)
47 next_cost[n] = prev_cost + new_node.p * (n + 1)
48 elif prev[i].i == par:
49 found_parent = True
50 i_par = i
51 elif found_parent: # We insert before the i-th node or after the last

one
52 if prev[i].i in children:
53 i_child = i
54 break
55 else:
56 next[i]. insert(i, new_node)
57 next_cost[i] = prev_cost + part_cost[i] + new_node.p * (i + 1)
58 if i_child < 0:
59 return next[i_par +1:], next_cost[i_par +1:]
60 return next[i_par +1: i_child], next_cost[i_par +1: i_child]
61

62 def main(g, n):
63 nodes = flatten ([t.nodes() for t in g])
64 print("Graph: ")
65 for t in g:
66 print(t)
67 curr = [[]]
68 curr_cost = [0]
69 for node in nodes:
70 all_next = []
71 all_cost = []
72 for i in range(len(curr)):
73 next , next_cost = next_iter(g, curr[i], node , curr_cost[i])
74 all_next += next
75 all_cost += next_cost
76 curr = all_next
77 curr_cost = all_cost
78

79 m = -1
80 mi = 0
81 for i in range(len(curr_cost)):
82 c = curr_cost[i]
83 if c > 0 and (m < 0 or c < m):
84 m = c
85 mi = i
86 return m, curr[mi]
87

88 def delta_bound(g):
89 bound = 0
90 max_bound = 0
91 for t in g:
92 for node in t.nodes():
93 bound += node.p * t.delta(node.i)
94 max_bound += node.p * max(t.delta(node.i) + 1, node.i)
95 return bound + 1, max_bound
96

97

98 if __name__ == ’__main__ ’:
99 if len(sys.argv) != 3:

100 print("Usage: ./statd.py <number of nodes > <sample size >")
101 exit()
102 n = int(sys.argv [1])
103 N = int(sys.argv [2])
104 avg = 0
105 mini = -1
106 maxi = -1

26



107 for _ in range(N):
108 g, p = gen(n)
109 c, l = main(g, n)
110 rivest = sum([(i + 1)*p[i] for i in range(n)])
111 print("Cost: %s\nList: %s\nRivest: %s\nDeltas: %s" % (c, l, rivest ,

delta_bound(g)))
112 if mini < 0:
113 mini = c
114 mini = min(c, mini)
115 maxi = max(maxi , c)
116 avg += c
117 avg /= N
118 print("avg: %s, min: %s, max: %s" % (avg , mini , maxi))

6.1.2 Code for MRF in the stochastic setting

This code has been modified often to test different formulas. It is parallelized to be able to run
as fast as possible, since simulations without it can take hours with 100 to 1000 nodes.

1 #!/usr/bin/env python3
2 import numpy as np
3 import sys
4 import matplotlib.pyplot as plt
5 from joblib import Parallel , delayed
6 from tqdm import tqdm
7

8 def flatten(l):
9 res = []

10 for x in l:
11 try:
12 iter(x)
13 res += x
14 except:
15 res += [x]
16 return res
17

18

19 class DepNode:
20 def __init__(self , prob , i):
21 self.i = i
22 self.p = prob
23 self.children = []
24 self.n = 1
25

26 def gamma(self):
27 return self.p + sum([a.gamma() for a in self.children ])
28

29 def lambda_l(self , i):
30

31 def aux(t, i):
32 if t.i == i:
33 return [t.i]
34 elif t.is_leaf ():
35 return False
36 else:
37 for x in t.children:
38 rest = aux(x, i)
39 if not rest:
40 continue
41 else:
42 return rest + [t.i]
43 return []
44

45 return aux(self , i)
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46

47 def anc(self , i):
48

49 def aux(t, i):
50 if t == i:
51 return [t]
52 elif t.is_leaf ():
53 return False
54 else:
55 for x in t.children:
56 rest = aux(x, i)
57 if not rest:
58 continue
59 else:
60 return rest + [t]
61 return []
62

63 return aux(self , i)
64

65 def delta(self , i):
66 if self.i == i or self.is_leaf ():
67 return 0
68 else:
69 return 1 + max([c.delta(i) for c in self.children ])
70

71 def l(self):
72 # get list of nodes in tree
73 return [self.i] + flatten ([a.l() for a in self.children ])
74

75 def nodes(self):
76 return [self] + flatten ([a.nodes() for a in self.children ])
77

78

79 def add_child(self , node):
80 self.children.append(node)
81 self.n += 1
82

83 def insert(self , node , i):
84 # Insert node as child of node i
85 def aux(t):
86 if t.i == i:
87 t.children.append(node)
88 else:
89 [aux(subt) for subt in t.children]
90 aux(self)
91 self.n += 1
92

93 def subtree(self , i):
94 if self.i == i:
95 return self
96 elif self.is_leaf ():
97 return False
98 else:
99 for child in self.children:

100 sub = child.subtree(i)
101 if not sub:
102 continue
103 else:
104 return sub
105

106 def is_leaf(self):
107 return self.children == [] or self.children [0] is None
108
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109 def __contains__(self , i):
110 def aux(t):
111 if t.i == i:
112 return True
113 elif t.is_leaf ():
114 return False
115 else:
116 return any([aux(c) for c in t.children ])
117 return aux(self)
118

119 def __str__(self):
120 # for debugging (used in print)
121 return ("%d : %f -> %s" % (self.i, self.p, [a.__str__ () for a in self.

children ])).replace("’", "").replace(’"’, ’’)
122 def __repr__(self):
123 return self.__str__ ()
124

125 def gen(n):
126 rng = np.random.default_rng ()
127 raw_probs = sorted(rng.random(n), reverse=True)
128 raw_probs = [x/sum(raw_probs) for x in raw_probs]
129 probs = [(i + 1, raw_probs[i]) for i in range(n)]
130 ntrees = int(rng.integers(low = 1, high = n, size = 1))
131 g = []
132 for k in range(ntrees):
133 if k == ntrees - 1:
134 size_tree = len(probs)
135 else:
136 size_tree = rng.integers(low = 1, high = len(probs) - (ntrees - k)

+ 1, size = 1)
137 pindex = int(rng.integers(low = 0, high = len(probs), size = 1))
138 i, p = probs.pop(pindex)
139 tree = DepNode(p, i)
140 for _ in range(1, int(size_tree)):
141 pos = int(rng.integers(low = 0, high = tree.n, size = 1))
142 pindex = int(rng.integers(low = 0, high = len(probs), size = 1))
143 i, p = probs.pop(pindex)
144 tree.insert(DepNode(p, i), tree.l()[pos])
145 g.append(tree)
146 return g, raw_probs
147

148 def gen_uni_list(n):
149 probs = [1/n] * n
150 g = [DepNode (1/n, 1), DepNode (1/n, 2), DepNode (1/n, 3)]
151 for i in range(3, n):
152 g[i % 3]. insert(DepNode (1/n, i + 1), i - 2)
153 print(g[0], g[1], g[2])
154 return g, probs
155

156 def gen_12(n):
157 g = [DepNode (1/3, 1), DepNode (1/3, 2)]
158 g[1]. insert(DepNode (1/3, 3), 2)
159 return g, [1/3]*3
160

161 def gen_no_deps(n):
162 rng = np.random.default_rng ()
163 # raw_probs = sorted(rng.random(n), reverse=True)
164 raw_probs = [1000000000] + [1] * (n - 1)
165 raw_probs = [x/sum(raw_probs) for x in raw_probs]
166 probs = [(i + 1, raw_probs[i]) for i in range(n)]
167 g = []
168 for i in range(n):
169 i = int(rng.integers(low = 0, high = len(probs), size = 1))
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170 index , p = probs.pop(i)
171 g.append(DepNode(p, index))
172 return g, raw_probs
173

174 def gen_sqrt(n):
175 s = int(np.sqrt(n))
176 raw_probs = [s*1000]*s + [1]*(n-s)
177 raw_probs = [x/sum(raw_probs) for x in raw_probs]
178 p0 = raw_probs [0]
179 eps = raw_probs [-1]
180 g = [DepNode(eps , i) for i in range(1, s+1)]
181 for i in range(s+1, n+1):
182 if i > n - s:
183 g[(i-1) % s]. insert(DepNode(p0, i), i - s)
184 else:
185 g[(i-1) % s]. insert(DepNode(eps , i), i - s)
186 return g, raw_probs
187

188

189

190

191 def b(i_tree , j_tree , i, j):
192 res = 1
193 for l in i_tree.lambda_l(i):
194 gamma_j = j_tree.subtree(j).gamma()
195 gamma_l = i_tree.subtree(l).gamma()
196 lambda_j = j_tree.lambda_l(j)
197 delta_j = len(lambda_j) - 1
198 alpha = 0
199 # bpar = [b(i_tree , j_tree , l, lambda_j[k]) for k in range(1, delta_j +

1)] # duplicate
200 bpar = [1] * delta_j # This is to bound b(l, par^(k-1)(j)) by 1
201 for m in range(delta_j + 1):
202 for k in range(1, m):
203 alpha += bpar[k - 1] * gamma_j ** (k - 1)
204 res *= (gamma_l /( gamma_l + gamma_j) + alpha)
205 print(i, j, res)
206 if res > 1:
207 return 1
208 return res
209

210 def all_b(n, g, anc_bound = False):
211 # Get the values for all b(i, j)
212 nodes = [t.nodes () for t in g]
213 b = []
214 for i in range(n + 1):
215 b.append ([])
216 for j in range(n + 1):
217 b[i]. append(int(i == 0))
218 # With the way lists are generated , children will be after their parents
219 for l in nodes:
220 for i in range(len(l)):
221 for j in range(i+1, len(l)): # j is behind i, b(i, j) = 1
222 b[l[i].i][l[j].i] = 1
223 # Now we need to compute b for i !=j and b(i, j) != 1 and b(j, i) != 1
224 def aux(i_tree , j_tree , i, j):
225 if b[i][j] + b[j][i] != 0:
226 return b[i][j]
227 else:
228 gamma_i = i_tree.subtree(i).gamma()
229 gamma_j = j_tree.subtree(j).gamma()
230 anc_j = j_tree.lambda_l(j)
231 delta_j = len(anc_j) - 1
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232 try:
233 par_i = i_tree.lambda_l(i)[1]
234 except IndexError:
235 par_i = 0
236 res = gamma_i / (gamma_i + gamma_j)
237 for m in range(delta_j + 1):
238 for k in range(1, m):
239 if anc_bound:
240 res += gamma_j ** (k - 1)
241 else:
242 res += b[i][ anc_j[k]] * gamma_j ** (k - 1)
243 if anc_bound:
244 return min(res , 1)
245 return min(res * b[par_i ][j], 1)
246 for n_li in range(len(nodes)):
247 for n_lj in range(n_li):
248 li = nodes[n_li]
249 lj = nodes[n_lj]
250 for i in li:
251 for j in lj:
252 curr = aux(li[0], lj[0], i.i, j.i)
253 b[i.i][j.i] = curr
254 b[j.i][i.i] = 1 - curr
255 return b
256

257 def last_b(n, g, anc_bound = False):
258 # Get the values for all b(i, j)
259 nodes = [t.nodes () for t in g]
260 b = []
261 for i in range(n + 1):
262 b.append ([])
263 for j in range(n + 1):
264 b[i]. append(int(i == 0))
265 # With the way lists are generated , children will be after their parents
266 for l in nodes:
267 for i in range(len(l)):
268 for j in range(i+1, len(l)): # j is behind i, b(i, j) = 1
269 b[l[i].i][l[j].i] = 1
270 # Now we need to compute b for i !=j and b(i, j) != 1 and b(j, i) != 1
271 def aux(i_tree , j_tree , i, j):
272 if b[i][j] + b[j][i] != 0:
273 return b[i][j]
274 else:
275 gamma_j = j_tree.subtree(j).gamma()
276 anc_j = j_tree.lambda_l(j)
277 delta_j = len(anc_j) - 1
278 try:
279 par_i = i_tree.lambda_l(i)[1]
280 except IndexError:
281 par_i = 0
282 res = 1
283 for m in range(1, delta_j + 1):
284 res -= (b[i][ anc_j[m]] * gamma_j ** m) / (1 - gamma_j)
285 if anc_bound:
286 return min(res , 1)
287 return min(res * b[par_i ][j], 1)
288 for n_li in range(len(nodes)):
289 for n_lj in range(n_li):
290 li = nodes[n_li]
291 lj = nodes[n_lj]
292 for i in li:
293 for j in lj:
294 curr = aux(li[0], lj[0], i.i, j.i)
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295 b[i.i][j.i] = curr
296 b[j.i][i.i] = 1 - curr
297 return b
298 def e_mrf(n, g, p, b):
299 res = 1
300 for j in range(1, n+1):
301 # locate j
302 t = 0
303 for i in range(len(g)):
304 if j in g[i]:
305 t = i
306 break
307 # j is in tree t
308 subsum = 0
309 for k in range(len(g)):
310 if k != t:
311 subsum += sum([b[i][j] for i in g[k].l()])
312 res += p[j - 1] * (len(g[t]. lambda_l(j)) - 1 + subsum)
313 return 2 * res
314

315 def e_mrf_pessimistic(n, g):
316 res = 0
317 for t in g:
318 for node in t.nodes():
319 res += node.p * (n - len(t.l()) + 1)
320 return 2 * res
321

322 def e_mrf_simple(n, g):
323 def aux(i, ti , gamma_j):
324 res = 1
325 for l in ti.anc(i):
326 res *= l.gamma() / (l.gamma () + gamma_j)
327 return 1 - res + sum([aux(c, ti, gamma_j) for c in i.children ])
328 res = e_mrf_pessimistic(n, g)
329 for j in g:
330 sub = 0
331 gamma_j = j.gamma()
332 for ti in g:
333 # iterate over other trees
334 if j != ti:
335 sub += aux(ti , ti , gamma_j)
336 res += 2 * j.p * sub
337 return res
338

339 def e_mrf_last(n, g):
340 def aux_p(i, ti , j):
341 res = 1
342 gamma_j = j.gamma()
343 for l in ti.anc(i):
344 gamma_l = l.gamma()
345 res *= gamma_l / (gamma_l + gamma_j)
346 return res
347 res = n
348 for t in g:
349 for j in t.nodes():
350 delta_j = t.delta(j.i)
351 gamma_j = j.gamma()
352 for ti in g:
353 for i in ti.nodes():
354 delta_i = ti.delta(i.i)
355 try:
356 p_par_j = aux_p(t.anc(j)[1], t, i)
357 except:
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358 p_par_j = 1
359 res -= j.p * (aux_p(j, t, i) + (p_par_j * (delta_i + 1)) **

(delta_j + 1))
360 return 2 * res
361

362 def e_statd(n, g, p):
363 return sum([j*p[j - 1] for j in range(1, len(p) + 1)])
364

365 def ratio(val , generator=gen , anc_bound=False):
366 g, p = generator(val)
367 b = all_b(val , g, anc_bound)
368 print(e_mrf(val , g, p, b), e_mrf_last(val , g), e_mrf_simple(val , g))
369 return e_mrf(val , g, p, b) / e_statd(val , g, p)
370

371

372

373 if __name__ == ’__main__ ’:
374 values = [9, 49, 100, 400] # range (10, 100, 2)
375 n_iter = len(values)
376 avg = []
377 maxi = []
378 mini = []
379 if len(sys.argv) != 2:
380 print("Usage: ./ ratio_MRF.py <sample_size >")
381 exit()
382 N = int(sys.argv [1])
383 for n in range(n_iter):
384 results = Parallel(n_jobs =-1)(delayed(ratio)(values[n], generator=

gen_sqrt , anc_bound=False) for _ in tqdm(range(N)))
385 avg.append(np.mean(results))
386 maxi.append(np.max(results) - avg[-1])
387 mini.append(avg[-1] - np.min(results))
388 print("%s: %s avg , %s min , %s max" % (values[n], avg[n], -mini[n] + avg

[n], maxi[n] + avg[n]))
389 plt.errorbar(values , avg , [mini , maxi])
390 plt.show()
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