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Abstract

New issues are emerging in the field of designing Datacenters. The research field about
demand-aware networks is booming since Datacenters tend to be structured accordingly to
the traffic load. This work focuses on finding improvements of a previous publication. The
goal was to find a way to create an algorithm to build a network with the same performance
in term of path length as the previous version but using less edges. The outcome is the de-
scription of an algorithm using 4 times less network links. This improvement of the previous
work contributed to a submission for the 2021 INFOCOM conference.
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Introduction

I had my research project with the Communication Technologies Group of the Faculty of
Computer Science part of the Unviersity of Vienna. The theme was the design of demand-
aware networks in order to respond to the demand of expanding Datacenters. My project
was focused on a paper Prof. Dr. Stefan Schmid (head of the group) published in 2019
for the International Symposium on Distributed Computing (DISC) conference. I have been
seeking to search some improvements of one algorithm and its analysis. This was for the
purpose of a submission in the 2021 INFOCOM conference. The following report is divided
in three chapters. The first two describe the problem of demand-aware networks and the
algorithms designed for the DISC conference. Then in a third part I detail my contribution in
the submission for INFOCOM conference. It contains an implementation of the algorithms,
an analysis of one specific algorithm about sparse graphs and then the given improvements
to it.
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Part 1

Presentation of demand-aware networks

1.1 The motivations

The research about design of demand-aware networks (DNAs) is motivated by the two
following points. On the one hand, in order to reduce costs and increase performance, com-
pagnies wish to design their data-centers in agreement with the traffic load in the networks.
On the other hand, new technologies of connecting servers are emerging such as Projec-
ToR. The idea of this project in development is to replace physical wires between servers
with open-air lasers which directions are controlled by ceiling mirrors. A simple implementa-
tion is to use a big flat mirror to the ceiling. In practice, spheric mirrors like disco balls will be
used to reduce the shifting of laser angles for more accuracy.

Figure 1.1: ProjecToR interconnect with unbundled transmit (lasers) and receive (photode-
tectors) elements.

This new technology required to find a way to design a network which satisfy a traffic de-
mand in term of path length and congestion with a constraint on the number of emitters and
sensors we can use per server rack. These components are placed on the top of rack of a
server. That allows us to consider this problem as a graph theory problem, where the nodes
of the graph are the top-of-rack servers and the edges are the established laser connections
between top-of-rack servers.
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The Communication Technologies Group of the Faculty of Computer Science of the Uni-
versity of Vienna led by Prof. Dr. Stefan Schmid, started to work recently on this topic. My
work in the laboratory was mostly related to a paper the group published in 2019 including
already some solutions to the problem [1]. This paper was written in collaboration with the
Communication Systems Engineering Department of Ben Gurion University of the Negev in
Israel.

The paper includes algorithms, results on its performance and proof of them. My project
was to first implement the existing algorithms and then try to find improvements either in the
algorithm definition, the performance analysis or both of them. The definition of the problem
comes from the paper [1], and we will focus in the following part on its explanation.

1.2 Description of the problem

To have a coherent form we will stick to the notation already used in the published paper.
The input of the problem is a demand distribution D of the traffic load and we consider the
directed and weighted graph GD which is associated. The nodes of the graphs correspond
to top-of-rack servers. For each node i we construct edges to all others nodes j with a
weight proportional to the amount of traffic between i and j. We then remove all edges with
a weight of zero. Finaly we normalize the weights in order to have a sum on all weights equal
to 1.

1

2

3

4

0.
1

0.3

0.25

0.
35

Figure 1.2: Simple example of a demand graph GD

It is not illustrated in the above example, but edges can be directed in both directions.

Considering this input, the problem is to find an undirected and unweighted graph which
minimizes the Expected Path Length (EPL) defined as follow:

EPL =
∑

(i,j)∈V×V

pi,j · di,j

where :
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• V is the set of nodes

• pi,j the weight of edge from i to j

• di,j the distance between i and j in the graph
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4

Figure 1.3: One possible result from the previous example

The above figure illustrated a possible solution which is not optimal. It has an EPL of
1.3. The best we can imagine is an EPL of 1 with a complete network for example. However
for larger networks which correspond to real datacenters, we cannot use this solution. The
problem is to find an algorithm which gives a result network and two upper bounds, one on
the EPL and one on the maximum degree (ie. the maximum number of neighbours a node
can have). Ideally, we would like to have a constant upper bound on the maximum degree,
independent on the input graph. By doing so, industrials would be able to create one size
fits all top-of-rack model. An other value to consider is the congestion which corresponds
to the maximumum traffic load in one single edge. This consideration is not include in the
paper I worked on, that is why it does not appear in my contribution part. However we will
give later some ideas, the research worked on, to taking it in consideration.

1.3 Description of the algorithms

The topologies of real datacenters are not totaly random and we can mention three rel-
evant categories of traffic demands : tree graphs, sparse graphs and regular and uniform
graphs. For each one, the published paper described an algorithm and its performance
about EPL and maximum degree. The division of separate categories allows to get more
accurate results for some specific families of input demands. The three algorithms are simi-
lar and use quite the same methods of reduction of the degree in consideration of the EPL.
That’s why we will start by describing them.

1.3.1 Methods of reduction

The following reduction tools are the bricks in the construction of the algorithms. It will be
important to recall it after in the improvements part.
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Near optimal binary trees

We consider a node i and the subset of its out-neighbours (ie. the nodes j we can find
and edge from i to j). In a input graph, the node is an important issue if the size of this
subset is big, espacially if it is greater than the bound of the maximum degree we wish to
reach. With the same reasoning, we need to care about nodes i with a large subset of in-
neighbours (ie. the nodes j we can find and edge from j to i). This sort of issue can appear
in a star distribution for example.

0

12

3

4 5

6

Figure 1.4: Example of a star input graph

Then the idea is to replace the neighbourhood by a near optimal binary tree. The lemma
2 of the paper [1] claims that such a construction enables to have asymptotically optimal
EPL. I chose in the implementation, as suggested in the paper, the Kurt Mehlhorn’s method
[2].
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3
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6

Figure 1.5: Possible binary tree construction from a star input

This construction enables to reduce the degree of the central node from 6 to 1 without
creating another central node with high degree.

Classification of the nodes

The previous method of creating near binary trees permits to reduce the degree of nodes
with an initial high degree. To define clearly the next algorithms, it is required to give a con-
crete definition to these so-called high degree nodes. The paper chose the high degree
nodes as the n/2 ones with the highest degree. The other half is denoted the low degree
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nodes.

Among the high-degree nodes, we can do another classification. Let’s denote ∆avg the
average degree of the input demand graph GD. Before going further, we recall an usefull
relation between the number of nodes n, the number of edges m and the average degree
∆avg.

∆avg =
2m

n
(1.1)

Then we denote high-in degree nodes (resp. high-out degree nodes), the nodes with
a in-degree (resp. out-degree) greater than 2∆avg. In order to illustrate this definition, we
recall our previous star example. The central node 0 with an initial degree of 6 is so a high-in
degree node. Let’s find ∆avg thanks to (1.1). Because n = 7 and m = 6, we have ∆avg = 12

7
.

Thus 6 > 2∆avg, that proves the classification of node 0 in the high-in degree nodes.

Use of helping nodes

The two previous tools enable, if there are used in a correct, to reduce the maximum
degree of the output graph. However we may be carefull on the use of near binary trees.
Let’s imagine a troublesome case where, for a node i, we create near-binary trees from all
its neighbourhood. That will involve i in each tree, and then multiply its initial degree. This
issue appears especially in the case a high-in degree node is connected to many high-out
degree nodes.

The last tool of degree reduction presented in the paper is the rerouting of edges from
high-out degree node to high-in degree node, by replacing it with 2 intermediate edges
passing through a another node we call helping node. To resolve the issue, this node can
be a low degree one.

k

i j initial edge
intermediate edges

Figure 1.6: Explanatory scheme of the use of helping nodes

1.3.2 Algorithms

Tree graphs

This algorithm deals with input graphs GD that can be regarded as a tree, the indirected
version of the graphs (ie., no directed edges and merging of the double edges between two
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nodes) is a tree (not necessarily binary).
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Figure 1.7: Example of a tree input graph

The algorithm is the following. For each node, we replace its initial in-neighbourhood
and out-neighbourhood with two near-binary trees. Then the paper claims that the EPL is
asymptotically optimal and the maximum degree is 8.

Sparse graphs

In the litterature, the disctinction between sparse and dense graphs is rather vague [3].
In this context, a graph topology is sparse, if by increasing its size, we have a constant ∆avg.

The algorithm is the following. We first replaced edges from high-in degree nodes to high-
out degree nodes thanks to helping low degree nodes. Then we replace in-neighbourhoods
of high-in degree nodes and out-neighbourhoods of high-out degree nodes by near optimal
binary trees. Then the paper claims that theEPL is asymptotically optimal and the maximum
degree is 12∆avg.

Regular and uniform graphs

A graph is regular if all nodes have the same degree. It is uniform if all the weights of
edges are the same. Then if we can find a spanner for D [4], we can use the following
algorithm. We cut in half the nodes between high and low degree nodes. Then we replace
edges between high degree nodes thanks to the help of low degree nodes. Finally, we create
near optimal binary trees on the neighbourhoods of all high degree nodes. The paper claims
that the EPL is asymptotically optimal and the maximum degree is 8∆avg.
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Part 2

Implementation and analysis of the performance

2.1 Implementation of the three algorithms

My first task during my internship was to implement the algorithms described in the paper
the group published. It allows me to get some insights about the problem and understand
the mechanisms in the algorithms. It also allowed us to compare the practical results with
the theorical bounds found in the analysis. The utltimate goal was to make them match.

Because of the multiple librairies it offers for scientific computing, I followed the advice
of my supervisors to use Python language. Futhermore researchers are used to code in
Python, thus the group could reuse it to go further. It did require me to test functions and
write a well structured and documented code. For example my supervisor could add some
evaluations of the congestion I didn’t focus on, and then accordingly modify the algorithms
implementation.

2.2 Testing on different graph categories

Once the algorithms were implemented, my supervisors asked me to find some little
modifications or details I could bring to the algorithms in order to increase performance, no-
tably for the maximum final degree. The EPL is indeed asymptotically optimal. The paper
precises indeed a lower bound on the value of EPL, that prevents us to find a better upper
bound because it asymptotically match with the lower one. On the other hand, we wish to
have a better bound on the maximum degree especially for the second and third algorithms
that give a result dependent on the average degree ∆avg. Ideally we would like to make it
independent of ∆avg.

For the rest of the project, I focused on the second algorithm and the sparse graphs.
This algorithm is indeed a general one and we can use its results for every type of graphs.
The hypothesis of a sparse graph is only used to assimilate ∆avg as a constant and so the
maximum degree bound as constant too. Furthermore the second and third algorithms are
very close, thus a modification in the second algorithm might be relevant for the third.

Before adding modifications to the algorithm, I tested its performance on different graphs
categories. I searched for graphs that have a heterogeneous distribution in order to have
some nodes with degree greater than 12∆avg. Otherwise the input graph would be an optimal
solution accordingly to the EPL and with a maximum degree lower than our algorithm can
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guarantee. It must also be a sparse graph, ie. with a number of edges m proportionnal to
the number of nodes n.

Highlands graphs

I first built some graphs with even distribution of high degree nodes we call peaks. The
following part describes the definition of these graphs, I called highlands graphs. They are
parametrized by an integer n which correponds to the number of nodes. Let index the nodes
from 0 to n − 1. We note k = b

√
nc For each node i, if i ≡ 0 mod k, i is a peak, then we

create edges from i to every j ∈ Ji+ 1,max(n− 1, i+ k)K. We add a final edge from the last
peak to a first one, otherwise we woud have a tree. Then we can show that ∆avg ∼ 2 when
n increases. Thus our bound on maximum degree is 24. The figure below is an example of
the 9-highlands graph generated with the library networkx of Python.

Figure 2.1: Example of a highlands graphs
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Figure 2.2: 200 first highlands graphs

The figure above shows the evolution of the EPL and the maximum degree of the result
graph created by the algorithm. The maximum degree does not exceed 5 which is far from
the theorical bound 24. We would find worst cases were the algorithm approaches the limit.

Composition of stars

Highlands graphs do not include high-in degree nodes, and thus they are no edges from
high-out degree node to high-in degree node. Because we said they can be a real issue for
the design of a bounded network, we need to test the algorithms using inputs including this
kind of edges. I studied other categories of graphs, one made of a composition of stars. The
definition is very close to highlands graphs one’s. We build k star trees with l branches. It
can be an ingoing star (with ingoing edges) or an outgoing one (with outgoing edges).

0

12

3

4 5

6

Figure 2.3: Ingoing star

0

12

3

4 5

6

Figure 2.4: Outgoing star

Then we connect the centers of the stars with a bidirected cycle as shown in the figure
below.
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Figure 2.5: Composition of star with k = 3 and l = 2

Figure 2.6: Star graphs with k = 8 and l = 5

I so tested the algorithm using the 256 compositions of stars with k = 8 and l = 5. For a
such graph, we have ∆avg = 7

3
, so our bound on the maximum degree is 12∆avg = 28. Again,

the worst result about the maximum degree, which is 9, is far from the theorical bound of 28.

I continued the testing of the algorithm performance, include some randomness in the
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generation of the graphs. The conclusion was that the algorithm was way more efficient
than the paper claimed for every tested input. That did not prove that we could not find a
bad case that matches with the theorical bound. However it gives me the insight that eiher
the algorithm or the analysis could be change a little in order to make results and theorical
bound closer. Futhermore this range of inputs would enable us to analysis changes and
compare two versions of the algorithm in term of EPL and maximum degree.
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Part 3

Modification brought to the algorithm and analysis

This chapter deals with the last part of my internship. After implementation and analy-
sis, thanks to new insights about the problem, I made to my supervisors some proposals to
modify the algorithm. The focus of these modifications was to reduce the theorical bound on
the maximum degree, which was intially equals to 12∆avg. Before going further we need to
recall the proof of this bound.

3.1 Proof of the upper bound on the maximum degree

The algorithm removes all edges from high-out degree nodes to high-in degree nodes
and replace it with a 2-hop path through a low degree node we call helping node. Every low
degree node can help at most ∆avg edges. By doing so we are sure to help enough edges.
There are at most m edges to help (m is the total number of edges). If each low degree
node helps ∆avg egdes, all in all, we are able to help n∆avg

2
= m according to (1.1).

Then we replace in-neighbourhood of high-in degree nodes and out-neighbourhood of
high-out degree nodes with near optimal binary trees. In order to prove the bound on maxi-
mum degree, the paper shows a different bound for each type of node and keep the greatest
one.

3.1.1 Low degree nodes

Because of the pigeonhole principle [5], the initial degree of a low degree node is at
most 2∆avg. In the worst case its initial neighbours can be high-out degree or high-in degree
nodes and they may involve the low degree node in their near optimal binary tree. A node in
a binary tree can have at most 3 neighbours. That’s why the contribution of the intial neigh-
bours in the final degree of this low degree node is at most 6∆avg.

Then this low degree node helps at most ∆avg edges from a high-out degree node to a
high-in degree node. Necessarily it will be involved in the trees from the out-neighbourhood
of the high-out degree node and from the in-neighbourhood of the high-in degree node.
Thus the node may be involved in 2∆avg trees and add a contribution of 6∆avg in the final
degree.

In total we found a bound on the maximum degree of the low degree nodes which is
12∆avg.
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3.1.2 High-in degree and high-out degree nodes

A node which is both high-in and high-out degree, will not be involved in any tree from
an other node, because we would have replaced intial connections with high-in degree or
high-out degree nodes. Furthermore, the other connections will be replaced by two edges
to the binary trees made of its in and out-neighbourhoods.

In total the final degree of a both high-in and high-out degree is at most 2.

3.1.3 Either high-in or high-out degree node

Let’s consider a node which is only high-in degree (the same reasoning is possible for an
only high-out degree node). Its in-neighbourhood will be replaced with a connection to the
root of a tree. The contribution of the out-neighbourhood in the final degree will be 6∆avg,
because its out degree is lower than 2∆avg (it is not a high-out degree node), and each con-
nection can lead to a participation in a binary tree.

In total the final degre of an only high-in or high-out degree node is at most 6∆avg + 1.

3.1.4 High but neither high-in nor high-out degree nodes

A high degree node which is neither high-in nor high-out degree, will have, with the
same reasoning, a final degree lower than 12∆avg. The contribution of the in and the out-
neighbourhood is indeed 6∆avg.

We can sum up the data in the following table. In order to decrease the bound we need
to focus on low and high but neither high-in nor high-out degree nodes. We denote the
following subsets:

• L, the low degree nodes

• H, the high degree nodes

• HI, the high-in degree nodes

• HO, the high-out degree nodes

L H \ (HI ∪HO) (HI \HO) ∪ (HO \HI) HI ∩HO
12∆avg 12∆avg 6∆avg + 1 2

Figure 3.1: Initial maximum degree for each type of node

18



3.2 First improvement to reach 6∆avg

3.2.1 Replace connections between high degree nodes

In order to reduce the maximum degree of high-degree nodes we can imagine to replace
not only edges from high-out degree node to high-in degree node, but all edges between
high degree nodes. That way it is sure that no high degree node will be involved in any
binary tree from another node. We have more edges to help but it is still possible to help
them all, because we are able to replace all edges. Thank to this update, if the in degree
(.resp out degree) is greater than 2∆avg, then the contribution of the intial in-neighbourhood
(.resp out-neighbourhood) in the final degree will be 1, else it will be at most 2∆avg instead
of 6∆avg. Let’s sum up the results.

L H \ (HI ∪HO) (HI \HO) ∪ (HO \HI) HI ∩HO
12∆avg 4∆avg 2∆avg + 1 2

Figure 3.2: Each edge between high degree node is replaced

We still have a global bound of 12∆avg but we have made significant improvements for
high degree nodes.

3.2.2 Decrease the limit on the number of edges a low degree node
can help

We previously used the fact that the initial algorithm enables to help a large amount of
edges, in fact all the edges. That allowed us to increase the number of edges replacements.
The idea of this part is that the algorithm is still enabling a too high number of helps. And this
high capacity to help has a cost, thus we would like to have a capacity close to the demand
of helps. This cost is concerning the final degree of the low degree nodes. If we enable them
to help a lot of edges, the analysis on the upper bound will lead to a high value.

My proposal was to diminish the number of edges a low degree node can help and make
this number depend on the initial degree of the node. The number of edges a node can help
decreases with its intial degree. For a node i, I chose to note this number βi while the initial
degree is denoted αi. Recall that in the initial algorithm, for each node i, βi = ∆avg. Now the
new improvement is to choose βi as follow.

βi = ∆avg −
αi
2

(3.1)

In order to well define the algorithm we need to justify that the number of edges we are
able to help (ie.

∑
i∈L βi) is greater than the number of edges between high degree nodes.

Let note this number B. We also note A the number of edges where at least one low degree
node is involved. Recall that m is the total number of edges, so we have :
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A+B = m (3.2)

Furthermore we consider the sum of the initial degrees of low degree nodes
∑

i∈L αi.
For each edge taken in count in A, either it counts for one in the sum of inital degrees
(edge connecting a low degree and a high degree node) or for two (edge connecting two low
degree nodes). It leads to the relation :

∑
i∈L

αi ≤ 2A (3.3)

Proving that we can help a sufficent number of edges means to show
∑

i∈L βi ≥ B.

∑
i∈L

βi =
n∆avg

2
− 1

2

∑
i∈L

αi ≥ m− A = B

Finally we need to measure the gain on the maximum degree bound. Let note γi the final
degree of the low degree node i. As we repeated previously, there are two contributions in
the final degree : the intial connections which are not replaced because i is low degree and
the involvement in two trees per edge it helps. Thanks to the definition of βi (3.1),

γi ≤ 3(2βi + αi) = 6∆avg.

L H \ (HI ∪HO) (HI \HO) ∪ (HO \HI) HI ∩HO
6∆avg 4∆avg 2∆avg + 1 2

Figure 3.3: Maximum degree for each type of node after the first improvement

According to the figure above, the bound on the low degree nodes is still the greatest but
now its value is 6∆avg instead of 12∆avg in the initial paper. That result improves a lot the
analysis, because without changing the idea of the algorithm, we manage to divide by two
the bound on the maximum degree.

3.3 Tries to reach a constant bound

The last result satisfied me a lot and encouraged me to dig deeper and maybe find a
better result for the degree bound. Remember that ideally we would like to find a constant
value, independent of ∆avg, and so independent of the input topology in order to create
regular top-of-racks servers. Next are the ideas I tried to reach this goal.

3.3.1 Replacing ∆avg with a parameter c

At this step the bound is 6∆avg. I didn’t want to change the reduction tools I’ve presented
at the beginning, because these are optimal for the EPL. My idea was to keep the structure
of the algorithm and add some modifications to change the result of 6∆avg into 6c with c a
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parameter I would try to optimize, and maybe find a value independent of ∆avg.

Let’s consider the low degree nodes. To change the result of 6∆avg into 6c we need to find
where does the ∆avg come from. By reading again the analysis, we find that it comes from
the pigeonhole principle. Because the low degree nodes are the n/2 nodes with the lowest
degree, their degree is lower than 2∆avg. Otherwise the sum on the total degree would be
greater than n∆avg [5].

To replace in the analysis ∆avg by a parameter c, we need to make the low degree nodes
have a degree lower than 2c. To do so I thought to change the number of low degree nodes.
Let note x the ratio of the number of low degree nodes to n, the total number of nodes.
Because the pigeonhole principle does not hold anymore, I had to find another upper bound
on the degree of the low degree nodes dependent on x. Then I would choose x to have this
bound equals to 2c. To do so we note nl the number of low degree nodes, x = nl

n
. Let sort

the nodes in an ascending order. The sum of degrees of all nodes is then

n∆avg =
∑
i<nl

αi + αnl
+
∑
i>nl

αi ≥ αnl
+
∑
i>nl

αi ≥ αnl
(n− nl + 1),

where the last inequality follows as for all i > nl we have αi > αnl
(the nodes are sorted).

Than for all i ∈ L
αi ≤ αnl

≤ n∆avg

n− nl + 1
≤ n∆avg

n− nl
.

αi ≤
∆avg

1− x
(3.4)

I then replaced ∆avg in the definition of βi by c. Then I tried to optimize the value of c the
lowest as possible, but the result was ∆avg. The detailled reasoning is in the appendix. So
with this method we found that the best we could do was to cut in half as previously to get a
bound of 6∆avg.

3.3.2 Adding another parameter d in the βi definition, βi = c− αi

d

To resolve the issue we encounter previously, I tried to add another parameter d in the
βi definition, βi = c − αi

d
. The reasoning is also added in the appendix, but it leads unfortu-

nately to the same conclusion as previously. The best result we could find was 6∆avg when
choosing βi = ∆avg − αi

2
.

The two analysis so elegantly concluded that 6∆avg was the optimal bound, I though I’ve
reached a fundamental limit of the problem. It took a little more time and energy to find new
ideas to go further and improve the results.
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3.4 Second improvement to reach 4∆avg

To make a step further we needed to find another idea. The last ideas do not enable us
to go beyond the bound of 6∆avg. This corresponds to the bound of low degree nodes, for
the high degree we have a bound of 4∆avg. Even if the goal of a constant bound seems hard
to reach, we can try to obtain a lower value for example 4∆avg. It is not a constant value but
it is still a good improvement from the initial one. It seems also reachable because we just
have to improve the bound for low degree nodes. Recall that γi is the final degree of the
node i, and for a node i ∈ L, we have, γi ≤ 3(2βi + αi). We have βi = ∆avg − αi

2
, but we

can imagine to have βi = 2
3
∆avg − αi

2
. Thus we would have γi ≤ 4∆avg. However we must

guarantee that βi is positive. Thanks to (3.4), we have a bound on the degree of i. We need
to choose x in order to have :

∆avg

2(1− x)
=

2

3
∆avg

.
That leads to αi = 1

4
. In other words, we change the definition of the low degree nodes,

and say that they are the n/4 nodes with the lowest degrees. Unfortunately without another
modification of the algorithm, we cannot guarantee that we are able to help enough edges.

∑
i∈L

βi =
1

3
m− 1

2

∑
i∈L

αi ≥
1

3
m− A

.

My supersivisor Maciej Pacut had the idea to distribute the load of helping edges, and
make high degree nodes contribute in this task. This may sounds nonsense, because high-
degree nodes are not suppose to help. But in fact it permits to help enough edges. We so
define a βi for i ∈ H. So we choose :

i ∈ H, βi = max(2/3∆avg −
1

6
αi, 0) (3.5)

That way we have,

∑
i∈H

βi ≥
2

3
· 3

4
n∆avg −

1

6

∑
i∈H

αi

.
Because

∑
i∈H αi ≤

∑
i αi = 2m, we conclude that

∑
i∈H

βi ≥ m− 1

3
m

.
All in all,

∑
i βi ≥ m − A = B. By doing so we can finally help enough edges and the

algorithm is well defined. The bound on the final degree for low degree nodes is 4∆avg as
expected, but we must analyse it again for high degree nodes. This is done in the appendix,
in a complete analysis of this improvement. Let’s sum up again the bounds on the degree for
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the different types of nodes. The calculations of these values are detailled in the appendix.
Note that they differ from the following table, because to make simpler we didn’t watch out
to consider integer values. Then rounding considerations increase the values at most by 6.

L H \ (HI ∪HO) (HI \HO) ∪ (HO \HI) HI ∩HO
4∆avg 4∆avg 2∆avg + 2 2

Figure 3.4: Maximum degree for each type of node after the second improvement

We managed to improve again, quite elegantly, the analysis of the algorithm. My intern-
ship was coming to an end, so we decided to write our ideas down, in order to submit a
paper on these improvements. The appendix which details the reasoning was a good draft
for a possible submission.

However when looking at our reasoning a second time, we were wondering if some de-
tails in the algorithm definition, we keep from the initial one, were still relevant. We were also
wondering if we could go further with this idea of making high degree nodes contribute to
the helping effort.

3.4.1 Last improvement to reach 3∆avg

Drop of the classification of high-in and high-out degree nodes

When we had read again the details of our paper, we noted that, because we changed
the definition of low degree nodes - they represent no more the half of the nodes - the defi-
nition of high-in degree and high-out degree nodes was no more relevant. The limit of 2∆avg

came in the initial paper from the fact that we cut the nodes in half the nodes, and by doing
so the low degree nodes had a degree lower than 2∆avg. But now it has changed, we should
fix the limit at 3

4
∆avg. If a node has its in degree (resp. out degree) larger than 3

4
∆avg than it

would be a high-in degree (resp. high-out degree) node.

We could so, but I was wondering that because now we remove edges between all high
degree nodes and not especially the edges from a high-out degree node and a high-in de-
gree node, it was no more relevant to make this classification. Our idea was to drop the
definition of high-in and high-ou degree node. That means that we would create binary trees
from the neighbourhoods of all high degree nodes.

Drop of the classification of high and low degree nodes

Then I tried to add a parameter p in the analysis of the algorithm. The idea was to find
the conditions, to have a maximum degree bound of p∆avg and if possible make p be less
than 4.
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Because we do binary trees from the neighbourhoods of all high degree nodes, for each
i ∈ H the contribution of the intial neighbours in the final degree is reduced to at most 2. We
have γi ≤ 6βi + 2. Recall that for i ∈ L, we have γi ≤ 3(2βi + αi). So now we introduce the
paramter p we will try to minimize, in the definition of βi :

• i ∈ L, βi = p
6
∆avg − 1

2
αi

• i ∈ H, βi = p
6
∆avg

That way, we have the following bounds on γi :

• i ∈ L, γi ≤ p∆avg

• i ∈ H, γi ≤ p∆avg + 2

Let’s calculate
∑

i βi to be sure that we can help enough edges.

∑
i

βi =
p

3
m− 1

2

∑
i

αi ≥
p

3
m− A

This was a really intersting result, because it means that if we choose p = 3, the algorithm
is well defined in term of number of edges to help. Thus our final bound on the maximum
degree would be 3∆avg, which improves again the initial algorithm.

Before claiming this result, we needed to make sure that βi is postive for

i ∈ L

. We need to have ∆avg >= αi. From (3.4), we choose x to have ∆avg = ∆avg

1−x , and thus fill
the condition on the positivity of βi. However this equation leads to the surprising result of
x = 0, in other words we need to consider all the nodes as high degree nodes, and by doing
so drop the classification of nodes.

In fact that changed a lot the way the algorithm is constructed, and make it simpler. One
important condition which was not detailled before, and which is needed soon as we enable
high degree nodes to help, is that if a node i helps an edge of a node j, then i will be in-
cluded in the the tree of j, but j will not be included in the tree of i. A complete explanation
of the final algorithm can be found in the appendix, in the draft paper of the submission for
the INFOCOM conference.

To conclude this part, we managed to divide by 4 the initial bound on the maximum
degree in the initial algorithm. Note that this is not constant, it still depend on ∆avg, but I
didn’t expect at the beginning to decrease so much the previous result.
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Conclusion

This project focused on demand-aware networks enabled me to be involved in a work
contributing to the state of art of networking. My main concern was to find some improve-
ments of the work the Communication Technologies group had begun. However, I thought it
would be little details about the way to implement the existing algorithm. I am really proud of
the outcome because we managed with my supervisor to change the algorithm and its anal-
ysis in order to achieve the same performance in term of path length in the network using
4 times less edges. I also hope that the implementations of the previous and the new algo-
rithms will enable them to move forward and find other important results. There is still a lot of
problems to resolve in this field. A important consideration my project did not focus on, was
the congestion. This leads to change a bit the reduction tools, such as replacing the near
optimal binary trees with non-binary trees in order to distribute the traffic load. Nevertheless,
I believe that the new algorithm definition can be used to deal with it. I look forward to the
results of the submission of this work for the 2021 INFOCOM conference. This internship
provided me an overview of the reasearch field, and the way a research group work together
in order to find and claim new outcomes.
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Part A

Sparse graph : try to get a constant bound

A.1 Introduce a new parameter c to have βi = c− αi
2

The idea is to classify the degrees in another way and then to do a quite same reason-
ing. Let’s note C the constant degree we wish to obtain as a degree bound. We note: c = C

6

and nl = m
c

. nl corresponds to the number of low degrees. In the previous version we had
chosen nl = m

∆avg
= m

2m
n

= n
2

which is the half.

The other nodes are high degree nodes and we also change the definition of high-out(in)
degree nodes. These are the nodes with out(in) degree > 2c.

Let’s do the first step, we replace all the edges between high degree nodes. There are B
edges to replace.We now decide to choose βi that way:

βi = c− αi
2

Before thanks to pigeon holes principle we were sure that βi was positive. But now we have
not this guarantee. To be sure that βi will always be positive we need to study the worst case.

Let’s sort the degrees. [i, ..., nl] are the low degree nodes and [nl+1, ..., n] are the high
ones. We take a look at the total degree:

n∆avg =
∑
i<nl

αi + αnl +
∑
i>nl

αi

n∆avg >= αnl +
∑
i>nl

αi

and if i > nl then αi > αnl because the nodes are sorted. So

n∆avg >= αnl(n− nl + 1)

αnl <=
n∆avg

n− nl + 1
<=

n∆avg

n− nl
And all the low degree nodes have this bound. Let’s find a condition on c to have βi >= 0:

c− n∆avg

2(n− nl)
>= 0

2(n− m

c
) ∗ c >= n∆avg

c >=
n∆avg + 2m

2n
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c >=
2m

n
= ∆avg

So we didn’t found a better bound than previously... We could do the same reasoning but
we would have a bound of 6c > 6∆avg.

A.2 Introduce a second parameter d to have βi = c− αi
d

Let’s find a sufficient condition on d to have
∑

i βi >= B∑
i

βi = m− 1

d

∑
i

αi

So d >= 2 is sufficient because we still have
∑

i αi <= 2A.

Now we also need sufficient conditions on d and c to have βi >= 0 Let’s note k = nl

n

which is the fraction of low degree nodes. We have

c =
∆avg

2k

and
αi <=

n∆avg

n− nl
=

∆avg

1− k
So

βi >= c− ∆avg

d(1− k)

So by writing equivalent inequalities :

c− ∆avg

d(1− k)
>= 0

∆avg

2k
>=

∆avg

d(1− k)

2k <= d(1− k)

d >=
2k

1− k
So this is a sufficient condition to have βi >= 0

Now let’s calculate the bound on low degree node :

γi <= 3(2βi + αi)

γi <= 3(2c− 2
αi
d

+ αi)

γi <=
3∆avg

k
+ 3αi

d− 2

d

And because αi <= ∆avg

1−k

γi <= 3∆avg

(
1

k
+

1− 2
d

1− k

)
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Let’s note

g(k, d) =
1− 2

d

1− k
We need to find a solution of the following system: 1

k
+ g(k, d) < 2

d >= 2k
1−k

On one hand, because we have d > 2, we have g(k, d) > 0 So it means that we need to
have k > 0.5 otherwise 1

k
>= 2.

On the other hand, thanks to the first inequation we have :

1− k
2k

+
1

2
− 1

d
< 1− k

And because of the second one we have

1− k
2k

>=
1

d

So
1

d
+

1

2
− 1

d
< 1− k

Finaly
k < 0.5

So unfortunately, there is no solution. We need to cut in half.
Then

γi <= 12∆avg

(
1− 1

d

)
And if we want this bound to be lower than 6∆avg then d = 2 So it corresponds to the initial
definition of βi
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Part B

Maximum degree of 4∆avg + 7

The algorithm partitions the nodes into two subsets: L, called the low degree nodes and
H, called the high degree nodes. The low-degree nodes are the n

4
nodes with the minimal

degree, and the high degree nodes are the remaining ones. Among the high degree nodes,
we distinguish the set HO (resp. HI), called the high-out degree nodes (resp. high-in
degree) that contain nodes whose out-degree (resp. in-degree) is greater than 2∆avg. Note
that high degree nodes can be neither high-out nor high-in degree.

The algorithm replaces all the initial edges between high degree nodes with 2-hop paths
through an intermediate node. We say that an intermediate node helps (is a helper ) an edge
between two high degree nodes. We say that the edges added to (and from) intermediate
nodes are intermediate edges. The algorithm uses both low and high degree nodes as
helpers. For a node i, we denote βi as the limit on number of edges the node i can help. We
denote αi the initial degree of node i (prior to the execution of the algorithm).

We choose the values βi in the following way:

• for i ∈ L we set βi = d2
3
∆avg − 1

2
αie

• for i ∈ H we set βi = max(d2
3
∆avg − 1

6
αie, 0)

We’ll later justify that these values are positive.
The algorithm reduces the degree of HI (resp. HO) nodes by forming a Mehlhorn tree

out of its ingoing (resp. outgoing) neighbors. For nodes that are both high in-degree and
high out-degree we construct two separate Mehlhorn trees: an ingoing one and an outgoing
one. It forms Mehlhorn trees out of both initial and intermediate edges.

High-in and high-out degree nodes may help other nodes (that are also H). When a
high-out degree node i helps a high degree node j, we skip j while building an outgoing
Mehlhorn tree of i (and similarly if i is high-in degree node). This is done for two reasons.
First, this would be unnecessary because they are already connected directly, but second,
we don’t want a high degree node involved in too many Mehlhorn trees of its neighbors.

Now we argue that our choice of βi is positive for low degree nodes. To this end, we
sort the the nodes in ascending degree order, and then the first 〈1, . . . , n/4〉 nodes are the
low-degree ones and the last 〈n/4 + 1, . . . , n〉 nodes are the high-degree ones. The sum of
degrees of all nodes is then

n∆avg =
∑
i<n/4

αi + αn/4 +
∑
i>n/4

αi ≥ αn/4 +
∑
i>n/4

αi ≥ αn/4(n− n/4 + 1),
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where the last inequality follows as for all i > n/4 we have αi > αn/4 (the nodes are sorted).
Than for all i ∈ L

αi ≤ αn/4 ≤
n∆avg

n− n/4 + 1
≤ n∆avg

n− n/4
≤ 4

3
∆avg,

and thus for all i ∈ L we have βi ≥ 0.

Now we claim that we have sufficient number of edges available as helpers (ie., ths sum
of βi of all nodes is sufficient). Let B be the number of initial edges between high degree
nodes. We need a helper for each of them, thus∑

i

βi ≥ B (B.1)

Recall that our algorithm helps only high degree nodes. Let A be the number of initial edges
in which a low degree node is involved. In total, these sum to all edges,

m = A+B .

Now we bound the number of edges B the algorithm helps. Each edge counted in A involves
at most 2 low degree nodes, thus

∑
i∈L αi ≤ 2A. This gives us

B ≤ m− 1

2

∑
i∈L

αi .

Now we show that our choice of βi satisfies the condition (B.1). For low degree nodes L we
have βi ≥ 2

3
∆avg − 1

2
αi and thus

∑
i∈L

βi ≥
2

3
· n

4
∆avg −

1

2

∑
i∈L

αi ≥
m

3
− 1

2

∑
i∈L

αi

For high degree nodes H we have βi ≥ 2
3
∆avg − 1

6
αi and thus∑

i∈H

βi ≥
2

3
· 3n

4
∆avg −

1

6

∑
i∈H

αi ≥ m− 1

6

∑
i∈H

αi ≥ m− 1

3
m,

where the last inequality follows from
∑

i∈H αi ≤ 2m. Finally, we obtain a lower bound on∑
i βi ∑

i

βi ≥ m− 1

2

∑
i∈L

αi ≥ B,

and we conclude that the algorithm has a sufficient number of helping edges, and thus it is
well-defined.

Finally, we evaluate the maximal final degree of the nodes. Let γi be the final degree
of the node i. The degree of each node may increase beyond its initial degree because it
helps other nodes, and, more importantly, because it may participate in Mehlhorn trees of
its neighbors.

A low degree node may be involved in Mehlhorn trees of all its neighbors (both initial and
intermediate). The total number of the node’s neighbors is the number of its initial neighbors
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αi plus at most two high degree nodes per each edge it helps, in total αi+2βi. A participation
in each Mehlhorn tree adds at most 3 edges to a node, thus

γi ≤ 3(2βi + αi) ≤ 4∆avg + 6,

where the last inequality follows from βi = d2
3
∆avg − 1

2
αie < 2

3
∆avg − 1

2
αi + 1.

A node i that is both high in and high out degree (i.e., i ∈ HO ∩HI), becomes the root
of two Mehlhorn trees. The algorithm never involves such node in helper’s Mehlhorn tree.
All of i’s initial edges are replaced with two edges that are leading to Mehlhorn trees that
contain all of its neighbors (and possibly some intermediate nodes). The node i cannot help
other nodes because αi ≥ 4∆avg, and thus βi = 0, and finally γi = 2.

For i ∈ HO\HI (and similarly for i ∈ HI \HO), we partition its initial degree αi into initial
out degree α+

i and initial in degree α−i . From i ∈ HO \ HI, α+
i ≥ 2∆avg and α−i > 2∆avg.

All initial outgoing edges are replaced with Mehlhorn trees, so i’s out-degree is 1 (from
connection to the Mehlhorn tree) plus 6 per each edge it is helping (thus it is involved in at
most 2 Mehlhorn trees, each adding at most 3 edges). Additionally, its in-going degree is α−i ,
as each of its neighbors is either directly connected with it, or this connection is replaced by
an intermediate node (that exchanges one edge for one edge). In total, the final degree of i
is

γi ≤ 1 + α−i + 6βi

if βi = 0, γi ≤ 2 + α−i < 2 + 2∆avg else

γi < 1 + α−i + 6(
2

3
∆avg −

1

6
αi + 1) = 4∆avg − α+

i + 7 < 2∆avg + 7,

where the last inequality follows from α+
i > 2∆avg.

A node i that is neither high in nor high out degree (i.e., i ∈ H \ (HI ∪ HO)), will not
be involved in the Mehlhorn trees of its initial neighbors. The algorithm replaced its initial
connections with high degree nodes using intermediate nodes. And recall that helpers do
not involve the nodes they helped in their Mehlhorn trees. The final degree of i is

γi ≤ αi + 6βi < αi + 6(
2

3
∆avg −

1

6
αi + 1) < 4∆avg + 6,

where the second inequality follows from αi < 4∆i and βi = d2
3
∆avg − 1

6
αie > 0.

All of the above bounds combined guarantee that the algorithm produces a network with
maximum degree of 4∆avg + 7.
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Part C

Maximum degree of 3∆avg + 8

The algorithm arbitrarily assigns a node to help each edge in the demand graph. While
doing so, it ensures that each node helps at most β = d∆avg/2e edges.

To construct the network, we first construct an auxiliary graph G′ that is initially equal to
the demand distribution graph GD. Then, we construct the network N from G′.

Now we construct the auxiliary graph G′ based upon the helper nodes assignment. If the
helping node k is chosen as either i or j, then do not modify any edges of G′. Otherwise, if
the algorithm helps k 6= i, j to help the edge (i, j), we replace the edge (i, j) in G′ with 2-hop
paths through k:

p(i, j) = 0

p(i, k) = p(i, k) + p(i, j)

p(k, j) = p(k, j) + p(i, j)

We say that the edges (i, k) and (k, j) added to (and from) intermediate nodes are interme-
diate edges.

Next, we construct the network N based upon the auxiliary graph G′. We start with an
empty network N . In G′, a node i has two types of new neighbors: the set Gi of intermediate
nodes that replaced an initial edges of i, and the set Hi of nodes in whose edges i is helping.
Among Gi we distinguish the set G−i (resp. G+

i ) of nodes that are connected with i with an
ingoing (resp. outgoing) edges. For each node i, the algorithm constructs two Mehlhorn
trees in N , one for G−i and another for G+

i , and connects its roots to i. (reference to Figure
of i,j and helper k)

Note that we skip the set Hi while building the Mehlhorn trees of neighbors of i. However,
the connection (possibly indirect) between i and a node j ∈ Hi appears while building the
Mehlhorn tree of j.

Now we claim that the algorithm has a sufficient number of nodes available as helpers
(i.e., the total number of available helpers n · β is sufficient to help all m edges).

n · β =
n∆avg

2
= m

and we conclude that the algorithm is well-defined.
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Now, we upper-bound the maximal final degree of the nodes. A node i is involved in one
Mehlhorn tree for each node it helped, in total at most 2β trees. Furthermore, the node i is
connected with one edge to Mehlhorn trees G+

i and G−i . Note that the node i is not involved
in the Mehlhorn trees of the intermediate nodes that replaced a node between i and another
node. A participation in each Mehlhorn tree adds at most 3 edges to a node, thus its final
degree γi is

γi ≤ 6β + 2 ≤ 6

(
∆avg

2
+ 1

)
+ 2 = 3∆avg + 8.

We conclude that the algorithm produces a network with maximum degree of 3∆avg + 8.
Remarks. When a node is assigned to help one of its incident edges, it is the most

efficient. However, the analysis holds for arbitrary assignments.
Now we claim that EPL are within the constant in comparison to optimum. This is a

consequence of near-optimality of Mehlhorn trees.
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